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Abstract

Background: Sequence alignment data is often ordered by coordinate (id of the reference sequence plus position
on the sequence where the fragment was mapped) when stored in BAM files, as this simplifies the extraction of
variants between the mapped data and the reference or of variants within the mapped data. In this order paired reads
are usually separated in the file, which complicates some other applications like duplicate marking or conversion to
the FastQ format which require to access the full information of the pairs.

Results: In this paper we introduce biobambam, a set of tools based on the efficient collation of alignments in BAM
files by read name. The employed collation algorithm avoids time and space consuming sorting of alignments by read
name where this is possible without using more than a specified amount of main memory. Using this algorithm tasks
like duplicate marking in BAM files and conversion of BAM files to the FastQ format can be performed very efficiently
with limited resources. We also make the collation algorithm available in the form of an API for other projects. This API
is part of the libmaus package.

Conclusions: In comparison with previous approaches to problems involving the collation of alignments by read
name like the BAM to FastQ or duplication marking utilities our approach can often perform an equivalent task more
efficiently in terms of the required main memory and run-time. Our BAM to FastQ conversion is faster than all widely
known alternatives including Picard and bamUtil. Our duplicate marking is about as fast as the closest competitor
bamUtil for small data sets and faster than all known alternatives on large and complex data sets.
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Background
The SAM (Sequence Alignment/Matching) and BAM
(Binary Alignment/Matching) file formats have become
the standard formats for storing sequence data which
was obtained through high throughput sequencing and
alignment of the resulting data to a reference genome.
Both formats were introduced as part of the SAMtools
package (cf. [1]). SAM is a human readable text for-
mat whereas BAM is a more compact and compressed
binary format. The current specification of the formats is
available at [2]. These files can be used for many appli-
cations including the detection of variants between the
contained data and a reference, sequencing quality con-
trol and long term storage. Many programs have been
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created for the alignment of sequencing reads to reference
sequences including SSAHA [3], BWA [4,5], Bowtie [6,7],
SOAP [8,9] and SMALT [10] andmost of the recently pub-
lished aligners are either capable of generating SAM or
BAM output or come with a script for converting their
output to SAM or BAM. Most sequence data produced
at the time being is sequenced as paired end reads. Short
linear DNA templates are sequenced from both ends.
This produces a pair of reads for each template. Both
ends of the pair are assigned the same read name in the
resulting data files thus providing the information that
both ends are most likely within a certain expected dis-
tance in the underlying genome. This information aids
in correctly aligning the resulting short sequences to a
reference or assembling the fragments to a new draft ref-
erence. In the data obtained from a sequencer the pairs
are usually collated in some form, either the two ends of
a pair directly follow each other in a file or appear in an
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equivalent position in two separate files such that each
of the two holds only the information for one of the two
ends. The order of reads aligned to a reference which
is most suitable for calling variants between the reads
and the reference or within the reads is however the one
resulting from sorting the data by coordinate (id of the
reference sequence plus position on the sequence where
the fragment was mapped). Thus many SAM and BAM
files are processed in this order. There are however some
applications which require the complete information from
each pair. This includes the conversion of BAM files to a
FastQ format suitable for realignment or a de novo assem-
bly for an alternative detection of variants (see e.g. [11])
as well as the marking of duplicate reads. It is thus use-
ful to have a quick, easy to use and reliable way of
collating reads from a SAM/BAM file by their name
without needing to resort to a full resorting of the
file by read names. For the application of duplicate
marking it is in addition desirable to keep the order
after collation as close to the coordinate sorted order
as possible, as clusters of read pairs mapped to the
same coordinates need to be detected. In this paper
we present biobambam, a set of tools for process-
ing BAM files using an efficient read name collation
algorithm.
The contained tools bamtofastq and bammark

duplicates2 are more efficient in terms of run-
time and memory requirements then equivalent
tools in the widely used Picard suite (see [12]).
bammarkduplicates2 offers performance similar to
that of the duplication detection tool of bamUtil (see [13])
for small data sets and in contrast to bamUtil easily han-
dles larger and more complex data sets. bamtofastq is
faster than the bam2fastq component of bamUtil. In addi-
tion to our front end programs we also make the collation
algorithm directly accessible as an API for use in other
projects in the libmaus project.

Implementation
The code presented in this paper is split into
two parts. The front-end tools bamtofastq and
bammarkduplicates2 show-casing some applications
of fast collation of alignments by name can be found in
the biobambam source package (cf. [14]). The implemen-
tation of the collation code and the BAM file input and
output routines are part of the larger libmaus project
(see [15]).
There are various code bases and APIs available for

SAM and BAM file input and output, including SAMtools
(C), SeqAn (C++, cf. [16]) and Bio-samtools (Ruby, cf.
[17]). We use our own implementation for reading BAM
files, which can be found in the libmaus project (C++,
[15]). The libmaus project also contains various support-
ing data structures which we use, including the collation

API in its namespace libmaus::bambam. The front-
end programs can be found in the biobambam project.
The tools can easily be extended to handle the newer
CRAM format (cf. [18]) via the io_lib part of the Staden
package (cf. [19,20]) which contains the Gap5 software
(see [21]).
In the following we will describe the algorithms and

data structures used for collating alignments by their
name. The API making the functionality available to
other users and the documentation of the front-end
tools bamtofastq and bammarkduplicates2 are
presented in Additional file 1: Appendix A.

Algorithms and data structures for collation by read name
Although the BAM file format can store alignments in
any order, most BAM files will either have the alignments
collated by the corresponding read names or will con-
tain the alignments sorted by their coordinates on the
reference the reads were aligned to. The first case will
commonly appear as the output of alignment programs
or if raw FastQ files coming from a sequencer are con-
verted to the BAM format without aligning the contained
reads to any reference. In this setting the output of the
alignments in an order collated by read name to another
format offering the same or less information is very
simple. In the second case a straight-forward but often
inefficient way is to first sort the input BAM file by
query name using tools like SAMtools or Picard and then
resort to a conversion as employed in the first case, as
a BAM file sorted by query name will have the align-
ments collated by read name. For a BAM file sorted by
alignment coordinates collating the alignments by read
name can often be done more efficiently by observing
that while the alignments paired by read name will com-
monly not be consecutive in the file, they are in most
cases close together. If we denote the average cover-
age of a coordinate on the reference by d (i.e. each
coordinate is covered by d reads/alignments on aver-
age), the average absolute template length of a pair
with both ends mapped to the same sequence by t
(e.g. the absolute value of the distance between the
mapping positions of the 5′ ends for Illumina paired-
end reads) and the read length by l, then we would
expect the distance between two such ends in the BAM
file to be d

l (t − l) on average. The mean number of
read ends starting at each position on the forward
strand is d

l and the distance between the two start-
ing points on the forward strand is t − l. Mapping the
data from the whole human genome sequencing study
ERP001231 ([EMBL:ERP001231], cf [22]) to the human
genome (GRCh37, see [23]) using the SMALT aligner
(see [10]) for instance, we observe an average sequenc-
ing depth of d = 45 with an average template length
of t = 324 at a mean read length of l = 101 (100
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base pairs were sequenced at one end of the tem-
plates and 102 from the other end). According to our
formula this implies an average number of about 99
alignments between the two alignments of one pair in
a BAM file containing the aligned reads. The actual
median we observe in the file is 107. Due to some
improperly mapped pairs in the file the weighted aver-
age value we see is not a meaningful number. Thus for
the average case it would be sufficient to use any type of
data structure which allows fast insertion, deletion and
lookup of alignments by read name for a small set of
alignments.
One such data structure would be a hash table with

collision resolution by separate chaining. In practice how-
ever we see cases where some read ends stay in this hash
table for an extended time when we process a BAM file
sorted by coordinates from start to end. This may happen
for reads where the two ends map to different chromo-
somes (split reads). There are also often regions in a
genome where the sequencing depth is much higher than
on average, which can lead to a drastic increase in the
amount of memory required to store the hash table at
certain points. Instead of using a hash table with collision
resolution we use a hash table H of fixed size h without
collision resolution. If there is a collision because two
alignments with different names are assigned the same
hash value, then the alignment previously in the hash
table is removed from the table and inserted into a list
L of fixed size l of alignments to be handled later. Each
time the list L runs out of space we sort the alignments in
L by read name. This sorting may yield some new pairs,
which we extract before storing the unpaired alignments
still in L in a temporary file and emptying the list L.
Pseudo code for the insertion of alignments into the
hash table H and the list L is given in Figure 1 and 2
respectively. As soon as all alignments have been read
from the source BAM file we move all the alignments
remaining in H over to the list L and in the end flush
the list L by sorting the remaining elements by name,
extracting the resulting pairs and writing the remaining
unpaired alignments to another temporary file. As all the
temporary files are sorted by name, we can easily merge
the files together to obtain a stream of alignments that
is sorted by read name. In this stream it is again simple
to detect and output pairs. A diagram of this data flow
can be seen in Figure 3. Using this kind of setup we are
able to quickly process most of the reads which have
both ends close together in the BAM file while avoiding
the use of excessive amounts of main memory to handle
those pairs which are not close together. For the discus-
sion of the complexity of the algorithm we will assume
that each single alignment can be processed in constant
time and stored in constant space. This assumption
is reasonable for short reads. For an input file

Figure 1 Hash Table Insertion Pseudo Code. Pseudo code for hash
table insertion applied to alignments read from the input file. If an
alignment B with an identical hash value h to that of the new
alignment A is present, then either a pair is detected and appended
to the output list O or we have a collision between a previous
alignment B and need to move B to the list L before we can insert A
into H. If there is no alignment for the hash value h yet, then the new
alignment is inserted into H.

containing n alignments let nH denote the number of
alignments processed without resorting to the list L and
let nL = n − nH . Then the time complexity of the algo-
rithm is O(nH + nL log nL), where log without loss of
generality denotes the base 2 logarithm. In the unlikely
worst case we may have nH = 0 and thus the worst
case run-time of the algorithm would become O(n log n),
i.e. the run-time would be equivalent to a full sorting
of the input file by name. Let sL denote the size of the
list L in memory. Then we need O(sL) space for sorting
each single block of alignments written to a temporary
file in memory and O(n/sL) space for merging the blocks
together. Choosing sL in O(√n) both of these become
O(√n). The hash table H requires constant space, thus
the total space complexity of the algorithm is O(√n) (in
fact we can make this O(n

1
2k ) for any finite constant pos-

itive integer k by using k merging runs). The algorithm
may use O(n) space in external memory in the unlikely
worst case.
To avoid the overhead resulting from the allocation of

a small block of memory for each single alignment, we
implement the hash table H and the list L in the fol-
lowing way. The hash table H is implemented as a fixed
size character array R which we use as a ring buffer, an
array P of integers and a B-tree B. P is the actual hash
table storing pointers into R, R is used to store align-
ments as uncompressed BAM entries and B contains the
starting positions of all alignments currently stored in R.
A pointer r which is initially set to 0 marks the current
position in R. When a name q is to be searched in H,
then we first compute the hash value h of the name and
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Figure 2 List Insertion Pseudo Code Pseudo code for insertion into the list L. The new alignment A is inserted into the list L. If the size of L has
reached a given threshold, then we sort L, move newly discovered pairs to the output list O, write the remaining unmatched alignments to a new
temporary file and erase L.

check whether position P[h] in R designates the start of
an alignment and the stored alignment has the name q.
An alignment with hash value h can be erased from H
by first removing P[h] from B and then setting P[h] to
a special value marking a free position in P. To insert a
new alignment with hash value h into H we first need to
make sure there is sufficient space. If P[h] is used, then
the currently stored alignment for h needs to be moved to
L and erased from H. Then we possibly need to remove
more alignments from H until the difference between
the current insert pointer r and the next higher value in
B (considered in a circular way as R is a ring buffer) con-
tains sufficient space to store the new alignment. As soon

Figure 3 Data Flow during Collation. The collation process uses
several layers of data structures for handling alignments. This includes
the hash table H (see Figure 4), the overflow list L (see Figure 5), a set
of temporary files Ti and a merged listM produced from the Ti .

as sufficient space is available, we can copy the alignment
data to position r in R, insert r into B, store P[h]= r
and advance r by the length of the alignment data we
have just stored. Figure 4 visualises the components of
the hash table H. We store the list L as a byte array.
The alignment data is filled in at the front end of the
array. The pointers to the alignment starting positions in
the byte array are filled in from the back of the array.
The list runs full if we are no longer able to add the
next alignment in the same way as the ones already
stored. Figure 5 shows a list L containing 5 alignments
A0,A1, . . . ,A4. A full list can be sorted by keeping the
alignment data in place and reordering the pointers at the
end of the byte array. StoringH and L in this way requires
a very small amount of memory allocation and freeing
operations for handling large sets of alignments.

Results and discussion
In the following we will compare the performance of our
new tools bamtofastq and bammarkduplicates2 to
available programs offering the same functionality. For
bamtofastqwe compared to

• Picard’s SamToFastQ component,
• bamUtil’s bam2fastq option (see [13]),
• bam2fastq (see [24]) and
• bampe2fqworphans (see [25]).

For bammarkduplicates2we compared to

• Picard’s MarkDuplicates component and
• bamUtil’s dedup option
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Figure 4 Collation Hash Table H. The hash table H used for collation
is composed of three components. The ring buffer R stores alignment
data. In the picture it contains three alignments Ai , Aj and Ak . The
insert pointer r is situated just after the alignment Aj . The hash table P
stores pointers into R, where the position of the respective pointers is
given by a hash value computed from the name of the stored
alignment. The B-tree B stores the starting positions of alignments in
R in sorted order.

Comparisons were performed with the current versions
of the programs when our benchmarking for this paper
started. These versions are

• 1.99 for Picard,
• 1.09 for bamUtil and
• 1.1.0 for bam2fastq.

We used the corrected version of the bampe2fqworphans
program as posted by Richard Finney on the SEQanswers
forum on the 24th of September 2013. Picard was run
using Oracle’s Java (Java SE 7u21).
We have run two types of tests. In the first type we

test the performance of the programs for a wide variety
of input files using a small PC type and a large compute
farm type system. These tests were generally run with
multiple identical instances in parallel, which reduces the
total amount of wall clock time required to obtain the at
least ten run time values we measured for each setting to
compute a mean run time and standard deviation. In the
second type of test we measured the dependence of the
run time on the number of concurrently running identi-
cal processes. This included the case of running a single
instance of a program on an otherwise idle machine. As

Figure 5 Overflow List L. The overflow list L is implemented as a
byte array. Alignments are inserted from the start of the array. In the
picture A0, A1, . . . A4 are contained. Pointers to the respective starting
positions are inserted from the end of the byte array.

consequently the time required for each single program
and data set was considerably longer we have run this test
on a reduced number of input files.
For the first type of test we have used two kinds of

hardware configurations. The first was a standard PC
equipped with an Intel Core i7-2700K four core processor
running at a frequency of 3.5 GHz, 16 GBa of mem-
ory and a fast solid state type drive (SSD) for storing
temporary files. The machine was running version 13.10
(Saucy Salamander) of Ubuntu Linux. We have run
up to four jobs of the same kind in parallel when-
ever concurrency was not hindered by excessive mem-
ory requirements. The machine was completely dedicated
to benchmarking during the experiments. We use this
machine type as an example for a small system. Due to the
absence interfering factors themeasured run times should
be relatively reliable. The second machine type were
HP ProLiant BL465c Gen8 server blades equipped with
two 16 core AMD Opteron 6272 processors running at
2.4 Ghz and 256 GB of memory. Files were stored on
a high performance parallel network based file system
(Lustre). These machines were running version 12.04
(Precise Pangolin) of Ubuntu Linux. We have run ten
jobs of the same kind parallel. The machines were not
processing other jobs during the benchmarking. The file
system however was not fully dedicated to our bench-
marking and may have shown punctual performance fluc-
tuations during our testing. We use this machine type
as an example for a large scale compute farm type sys-
tem. For both machine types the times given below
consist of an average and standard deviation over 10
runs of the programs with identical parameters. The
memory usage given denotes the maximum resident
set size (RSS) observed during the programs run. For
running Picard we have adjusted the amount of mem-
ory available by setting the -Xmx switch of the vir-
tual machine and chosen the serial garbage collector
(switch -XX:+UseSerialGC). Available memory was gen-
erally set to a multiple of 64 MB. The amount of memory
used (the RSS) by the virtual machine can exceed the
desired value by a small amount. This explains why the
values given below for memory used by Picard is gener-
ally not a multiple of 64 MB. Before starting the timing
tests on the PC type system we have checked the capa-
bility of the programs to handle our test data sets on a
machine equipped with 512 GB of memory. This machine
uses Intel Xeon E7440 processors running at 2.4 GHz.
We have considered a program on a data set as admis-
sible for the PC system if it was capable of handling the
data set using 10 GB of memory. On the server blades we
have provided 240 GB of memory to the set of 10 concur-
rently running process (due to features of the employed
job scheduling system 240 GB denotes 240 · 109 bytes in
this context). Thus each single process had an implicit
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limit of 24 GB (i.e. 24 · 109 bytes). We have set a run-
time limit of one day for each data set. Thus a program
was considered not capable of handling a data set when it
ran for more than one day or required more than 24 GB
of memory. On both system types we used the programs
were in no case slowed down by insufficient input speed.
On the output side we generally did not write the result-
ing files to disk for any of the programs as we wanted to
measure the speed of the algorithms without interference
of output speed. For the case of duplicatemarking in BAM
files the output is generally not produced at a rate which
would pose a challenge for commonly used current stor-
age systems. On the PC system the output rate for the
BAM to FastQ conversion of biobambam is for at least
one of the input files we used exceeding 120 MB/s. This
would be too much for a single conventional hard drive
but not for the SSD storage or a high performance network
file system. If the output speed in BAM to FastQ conver-
sion is a limiting factor, then the option of bamtofastq
for generating gzip compressed output may be helpful.
Due to the long run-time for some data sets the set of
input files we have used on the PC system is a subset of
the files we have evaluated on the server blades as only
a single PC system was available. On the PC system we
have evaluated the dependence of program run-time on
the amount of available RAM for programs which allowed
setting any parameters controlling memory usage. On the
server blades we have given all available memory of the
machine to the set of 10 concurrently running processes of
the same type. For Java we set the target memory per vir-
tual machine to 16 GB as we needed to give a fixed amount
at the start of the program. This was sufficient to not let
run Picard out of memory on any data set. For cases where
Picard was using close to all of the provided memory we
also state the run-time for higher amounts of available
memory.
For the second type of test measuring the dependence

of run time on the number of concurrently running iden-
tical processes we have also used two types of systems.
The first type is the compute farm setting described above.
Again the machines used were not processing other jobs
during our benchmarking but the file system was not fully

dedicated. We have tested the run time for each pro-
gram when running 1, 2, . . . , 10, 12, 16, 24 and 32 identical
instances in parallel. We have replaced the PC type sys-
tem for this type of test by a small server type machine
with a higher number of processor cores to observe the
behaviour of the programs for more than four paral-
lel instances in a controlled input/output setting. This
system was fitted with two Intel Xeon E5-2620 proces-
sors and 32 GB of RAM. Each of the processors has 6
cores and is capable of hyper threading, thus the total
number of processes the machine can run in parallel
is 24. The machine was running version 14.04 (Trusty
Tahr) of Ubuntu Linux. Like the PC type system this
machine was also fitted with a fast solid state drive for
storing files. We have tested the run time for each pro-
gram when running 1, 2, . . . , 10, 12, 16, 20 and 24 identical
instances in parallel. For both machine types the times
given below consist of an average and standard devia-
tion over at least 10 runs of the programs with identical
parameters.

Performance comparison forbamtofastq on the PC system
For evaluating the performance of our approach for con-
verting BAM to FastQ on the PC system in comparison
with the other alternatives mentioned above we have used
the following data sets, each stored in a single BAM file (a
summary of the files’ characteristics is given in Table 1):

1. The low depth single chromosome human data set
HG03520 (see [26]) from the 1000 genomes project
(cf. [27]) with a median depth value of 8 (the median
of the sequence of the number of reads mapping to
each reference base with any coverage). We have
used the BAM file as provided by the project. We use
this 1 GB file as an example of a relatively small file.
The median of the distance between the two ends of
a template in the file is 25. All the programs were
able to handle this data set with less than 256 MB of
memory. bamtofastq processed the file in
23 ± 0.87 seconds and space 112 MB. All other
programs were slower. bam2fastq used 57 ± 2.9
seconds and 16 MB RAM, bampe2fqworphans

Table 1 Characteristics of test files used for PC test

Test file characteristics

Name HG03520 HG00096 ERP001231 SRP017681

File size/GB 1 15 95 44

Depth median 8 4 45 879

Mate distance median 25 5 107 158240

Number of reads 10613096 145063589 1357751670 723287936

Characteristics of test the files used for the PC test. The depth row states the median depth over all reference bases with any coverage. The mate distance row gives
the median of the distance of mates in the input file. File sizes are rounded to integer GB.
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33 ± 2.1 and 9 MB, SamToFastQ 106 ± 5.8 and 137
MB and bamUtil bam2fastq 49 ± 2.8 and 26 MB. All
programs but bamtofastq and SamToFastQ have
no options for controlling the available memory. The
memory usage of bamtofastq can be lowered to
33 MB using non standard settings. The program
then needs 22 seconds (all ten runs took 22 seconds).
Most of this memory usage consists of program code.
Even with default settings the memory usage of
bamtofastq is so far below the memory per core
on a current machine that we do not find a further
reduction useful. Both bamtofastq and
SamToFastQ did not benefit from using more
memory.

2. The low depth human data set HG00096 (see [28])
from the 1000 genomes project with a depth median
value of 4. We have used the BAM file as provided by
the project, the size of the file is 15 GB. The median
of the distance between the two ends of a template in
the file is 5 (due to some outliers the weighted
average is 96220). All the programs are capable of
processing this file using 256 MB of memory.
bamtofastq requires 5.3 ± 0.04minutes using
132 MB of memory and 5.46 ± 0.04minutes using
64 MB. All the other programs have a higher
run-time (bam2fastq 12.7 ± 0.14minutes using
238 MB, bampe2fqworphans 7.3 ± 0.15 using
32 MB, SamToFastQ 20.6 ± 0.17 with 226 MB and
bamUtil bam2fastq 10.38 ± 0.06 using 238 MB).
None of bamtofastq and SamToFastQ gained
significantly by using more main memory.
SamToFastQ fails to process the data set given
128 MB of RAM.

3. The high depth human data set ERP001231
([EMBL:ERP001231], see [22]) with a median depth
value of 45. This data was downloaded as FastQ and
mapped to the human reference [23] using the
SMALT aligner [10]. The resulting BAM file was
sorted by coordinate using SAMtools. The median of
the distance between the two ends of a template in
the file is 107 but due to some very pronounced
peeks and outliers in the distribution the weighted
average is 1.4 · 107. The size of the resulting sorted
BAM file is 95 GB. bamtofastq was able to handle
the file in 44.53 ± 0.62minutes and 133 MB of RAM.
Using more main memory resulted in only a slight
decrease in run-time (42.99 ± 0.36minutes using
2.44 GB). Picard ran out of memory on the file when
provided with 5 GB and less of main memory. It took
497.71 ± 5.41minutes using 6.05 GB of RAM. The
run-time drops to 180.03 ± 2.21minutes for 8.07 GB
and further to 169.69 ± 0.98minutes for 12.09 GB.
The high run-time of Picard using 6 GB of main
memory suggests that the employed memory

management gets very inefficient when the program
uses most of the provided memory. For 5 GB it fails
after a run time of more than 8 hours. The moderate
drop of the run-time between 10 and 12 GB suggests
that a further increase in memory would not lead to a
significant decrease in run-time. Indeed, a
comparison of the run-time on the compute farm
nodes when allowing 12 and 230 GB of RAM showed
a gain of less than 1 percent (the run time measured
was 374.48 ± 4.66minutes for 12 GB and
371.76 ± 4.58minutes for 230 GB, in both cases no
concurrency was employed for the measurement).
bamUtil failed the admissibility test for this data set.
It aborted with an out of memory type error. On the
Xeon E7440 type machine it ran for 58 hours before
producing this error. Note that even if the program
would be capable of handling the data set using
more memory the run-time would still exceed the
58 hour mark on the Xeon E7440 machine. This
suggests conceptual problems in the approach of the
program for larger data sets. bam2fastq processed
the file in time 144.20 ± 1.11minutes using 4.35 GB
of RAM, bampe2fqworphans required 97.97 ± 1.10
minutes using 3.48 GB. Thus bamtofastq
outperforms the other tools while using less
memory on this data set.

4. The high depth E. coli data set from the study
SRP017681 ([EMBL:SRP017681], see [29]) with a
median depth value of 879. This data was also
downloaded as FastQ and mapped to the respective
reference genome (see [30]) using SMALT. The
resulting BAM file was sorted by coordinate using
SAMtools. The sorted BAM file has a size of 44 GB.
The median of the distance between the two ends of
a template in the file is 158240, the weighted average
is 1.7 · 107. bamtofastq is able to handle this file in
37.00± 0.29minutes using 206 MB of main memory.
In this memory setting a large amount of reads need
to be handled by resorting to temporary files on
secondary storage because of the high depth of the
input data. Due to this effect the run-time decreases
to 24.27± 0.16minutes when we let the program use
2.45 GB of memory. Picard fails with an out of
memory type error when given 8 GB of main
memory. Using 9.18 GB of memory it processes the
file in 236.54 ± 2.75minutes. Increasing the main
memory given to 12.29G and 13.28G decreases the
run time to 111.93 ± 0.82 and 97.94 ± 0.65minutes
respectively. As above for the high depth human
data set ERP001231 we have checked the effects of
drastically increasing the amount of available
memory using the compute farm node setting.
Here an increase from 13 to 230 GB resulted in a
speed gain of 6.5% (we measured 213.43 ± 2.61
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Figure 6 Run-time against memory usage plots for PC system. Plots showing run-time against space comparisons of the biobambam
tools bamtofastq and bammarkduplicates2 with equivalent tools on the PC system for the four data sets HG03520, HG00096,
ERP0012131 and SRP017681.bamtofastq is compared to Picard’s SamToFastQ, bamUtil’s bam2fastq, bampe2fqworphans and bam2fastq.
bammarkduplicates2 is compared to Picard’s MarkDuplicates and bamUtil’s dedup. bamUtil failed our admissibility tests for BAM to FastQ
conversion as well as duplicate marking on ERP0012131 and SRP0176 81 and is thus not contained in the respective plots.
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minutes using 13 GB and 200.59 ± 2.75minutes
using 230 GB, in both cases no concurrency was
employed for the measurement). Again as for the
high depth human data set bamUtil fails the
admissibility test for this data set. Given a limit of
10 GB the program fails with an out of memory type
error after more than 36 hours on the Xeon E7440
machine. bam2fastq processed the file in
59.53 ± 1.03minutes using 6.56 GB of memory.
bampe2fqworphans took 37.19 ± 0.36minutes using
5.20 GB. bamtofastq outperforms the other tools in
every aspect on this data set.

The left column of Figure 6 shows the run-time against
internal memory tradeoffs as stated above in the form
of plots. The error bars on the data points depict the
standard deviation for the respective value. Picard uses
Java’s HashMap class and keeps each end in this hash
table until the other end of the read is found in the file.
This explains its high memory requirements. The per-
formance is also low due to frequent object allocation
and implicit deallocation (garbage collection) processes,
in particular when the memory used is close to the mem-
ory given. bamUtil, bam2fastq and bampe2fqworphans
are similar in the sense that they also keep data struc-
tures containing all the reads whose mates have not been
seen so far. In consequence they require more memory as
the size and depth of the input file grows. bamtofastq
can handle all the given files easily with its default small
memory foot print. In particular it does not require the
user to adjust the input parameters to process any of
the files.

Marking duplicate alignments
Large sets of sequenced reads often contain reads or read
pairs which are not unique, i.e. such reads and read pairs
which map to the same coordinates on a given reference
genome. This may happen for several reasons including
artefacts of library preparation (e.g. duplication by PCR),
sequencing artefacts (e.g. optical duplicates) or just by
chance as the selection of sequenced molecules is usu-
ally a random process. For some data sets the number
of duplicate reads can be very high. In the E. coli data
set SRP017681 mentioned above (see [29]) for instance
more than 90% of the reads are duplicates. The presence
of duplicates can significantly influence downstream anal-
ysis. Thus the detection and marking of duplicates is an
important step in the analysis of sequenced data. The
Picard tool suite contains a program for marking dupli-
cates in BAM files. We will in the following provide a
rough description of how it works. First the program con-
structs a list LP of aligned pairs and a list of aligned reads
(first or second mates of pairs and single) LS in external
memory. Both lists are sorted by coordinates, where the
sorting of the list LP is lexicographic in the coordinates of
the two ends (i.e. the pairs are first sorted by the leftmost
mapping end and then thosewhich have the same leftmost
mapping position are sorted by the mapping coordinate
of the other end). The coordinates used denote the posi-
tion of the 5′ end of the read on the reference (i.e. the
left end position on the reference for those mapped to
the forward strand and the right end position on the ref-
erence for those mapped to the reverse strand). Pseudo
code for this list generation stage is shown in Figure 7.
In sorted order it is very simple to partition the lists LP

Figure 7 Pseudo code for pair and fragment list generation in duplicate marking algorithm. Pseudo code for list generation in duplicate
marking algorithm. The input parameter C denotes a collating BAM file reader whose tryPair method fills the given pair and returns true if this
operation was successful and false if no more reads could be obtained. The algorithm generates the lists LS and LP as described in the text. We
assume that the tryPair method returns an unmapped read as the second component for orphan and single end reads.
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and LS into subsets of read pairs and single reads respec-
tively which map to the same coordinates. In each such
subset a single element with the highest score computed
from the base qualities of the reads is selected as represen-
tant and the other elements are considered and marked as
duplicates. In addition the current code also considers sin-
gle ended reads and orphans as duplicates if they map to
the same coordinate as one end of a mapped pair. Pseudo
code for the deduction of reads to be marked as duplicates
based on the lists LS and LP is shown in Figures 8 and 9
respectively.
The dedup option in bamUtil produces the same results

as Picard’s MarkDuplicates component using different
data structures in RAM and without resorting to the
construction of the lists LS and LP in external memory.

If the input file is given in coordinate sorted order it
is relatively easy to detect when all reads mapping to a
coordinate or all read pairs mapping to a pair of coordi-
nates have been observed during a linear scan of the file.
One approach is thus to keep lists of reads in memory
for single coordinates and pairs of coordinates and pro-
cess these lists as soon as it is clear that no more reads
will be added down stream. As this does not require a
full sorting the approach is faster in practice. For some
files the size of the lists which need to be kept in mem-
ory can become very large and the approach suffers from
similar problems than the collation of reads by name
without resorting to external memory. In biobambam we
have implemented a program bammarkduplicates2
which combines the two approaches. We keep lists in

Figure 8 Pseudo code for fragment duplicate marking. Pseudo code for the deduction of reads to be marked as duplicates from the list LS as
described in the text. The method getRank applied to an alignment yields the rank (line number) of the alignment in the original input BAM file.
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Figure 9 Pseudo code for pair duplicate marking. Pseudo code for the deduction of reads to be marked as duplicates from the list LP as
described in the text. The method getRank applied to an alignment yields the rank (line number) of the alignment in the original input BAM file.

memory like bamUtil, but whenever the the number of
elements stored in these lists exceeds a given threshold
we flush the list with the lowest coordinate out to disk
and mark the coordinate for handling in external mem-
ory. While filling the lists in RAM we use our collation
by read name approach to fill the lists for read pairs. This
hybrid approach gives bammarkduplicates2 a very
stable and predictable memory footprint. This is different
from Picard’s MarkDuplicates tool and bamUtil’s dedup,
which use a large amount of main memory for some data
sets featuring high coverage in some regions or as a whole
and thus are harder to handle in automated sequencing
pipelines, as they sometimes require manual intervention
due to out of memory type errors.

Performance comparison forbammarkduplicates2 on
the PC system
We have evaluated the performance of bammark
duplicates2 in comparison to Picard’s MarkDupli-
cates and bamUtil’s dedup option for the same BAM files
as we have used above for the BAM to FastQ evaluation
on the PC system.

Table 2 Characteristics of test files used for compute farm
test

Test file characteristics of files used for compute farm

Name File size/GB Depth Mate distance Number
of reads

HG03520 1 8 25 10613096

ERR239642 2 1 3 20024712

ERR217514 5 2 4 49993736

ERR196957 7 1 148 99923268

HG00096 15 4 5 145063589

ERR328876 33 12 46 359486910

ERR054938 32 10 30 427080966

ERR328190 36 14 63 427700148

SRP017681 44 890 158240 723287936

ERP001231 95 45 107 1357751670

Characteristics of test files used for compute farm test. The depth column states
the median depth over all reference bases with any coverage. The mate distance
column gives the median of the distance of mates in the input file. File sizes are
rounded to integer GB.
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1. The small low coverage file HG03520 is processed by
bammarkduplicates2 in 2.43 ± 0.013minutes
using 68 MB of RAM, MarkDuplicates requires
3.57± 0.02minutes with 113 MB and bamUtil dedup
2.31 ± 0.01 using 29 MB. bammarkduplicates2
and MarkDuplicates do not profit from using more
memory. bamUtil dedup is the fastest program for
this data set and about 5% faster than
bammarkduplicates2.

2. Like the smaller file HG03520 the low depth data set
HG00096 can efficiently be handled by the three
programs with small amounts of heap space.
bammarkduplicates2 handles the file in
33.90 ± 0.37minutes using 295 MB of RAM,

Table 3 Run-time comparison of bamtofastq and
alternativeson compute farm nodes (part a)

Run-time comparison for BAM to FastQ conversion
on server blades

Data set Program Memory/GB Run-time/minutes

HG03520 biobambam 0.11 0.86± 0.08

bam2fastq 0.017 1.98± 0.097

bampe2fqworphans 0.0092 1.18± 0.15

Picard 0.62 3.86± 0.23

bamUtil 0.028 1.67± 0.24

ERR239642 biobambam 0.13 1.55± 0.15

bam2fastq 0.033 3.89± 0.12

bampe2fqworphans 0.026 2.49± 0.12

Picard 0.76 7.45± 0.27

bamUtil 0.12 30.92± 0.92

ERR217514 biobambam 0.13 3.86± 0.27

bam2fastq 0.080 9.52± 0.35

bampe2fqworphans 0.065 6.07± 0.075

Picard 0.95 18.83± 0.44

bamUtil 0.36 295.12± 4.43

ERR196957 biobambam 0.13 6.17± 0.37

bam2fastq 0.13 17.74± 0.45

bampe2fqworphans 0.11 11.63± 0.30

Picard 1.14 33.99± 0.79

bamUtil 0.68 758.39± 8.35

HG00096 biobambam 0.13 11.71± 0.28

bam2fastq 0.23 29.71± 0.47

bampe2fqworphans 0.032 16.87± 0.22

Picard 1.01 55.24± 1.29

bamUtil 0.23 25.50± 1.14

Run-time comparison of biobambam’s bamtofastq, bam2fastq,
bampe2fqworphans, Picard’s SamToFastQ and bamUtil’s bam2fastq for the data
sets HG03520, ERR239642, ERR217514, ERR196957 and HG00096 described in
Table 2 on compute farm nodes.

MarkDuplicates in 48.06 ± 0.39s using 302 MB and
bamUtil dedup in 32.83 ± 0.20 using 356 MB.
bammarkduplicates2 and MarkDuplicates

Table 4 Run-time comparison of bamtofastq and
alternativeson compute farm nodes (part b)

Run-time comparison for BAM to FastQ conversion
on server blades

Data set Program Memory/GB Run-time/minutes

ERR328876 biobambam 0.13 26.90± 0.49

bam2fastq 0.85 74.55± 0.60

bampe2fqworphans 0.70 51.10± 0.61

Picard 4.95 137.98± 1.58

bamUtil ≥ 1440

ERR054938 biobambam 0.13 29.42± 0.57

bam2fastq 0.98 76.15± 1.54

bampe2fqworphans 0.84 50.8± 0.62

Picard 6.69 152.62± 1.06

bamUtil 6.13 440.8± 5.68

ERR328190 biobambam 0.13 51.70± 0.60

bam2fastq 4.21 106.73± 0.45

bampe2fqworphans 3.45 74.71± 0.87

Picard 16.12 170.88± 1.07

Picard1,16 16.12 123.10± 8.04

Picard1,230 30.94 120.06± 8.64

bamUtil ≥ 1440

SRP017681 biobambam18 0.18 137.21± 1.17

biobambam23 2.45 61.49± 0.68

bam2fastq 6.56 153.85± 1.74

bampe2fqworphans 5.20 91.83± 0.49

Picard 16.10 261.24± 3.05

Picard1,16 16.10 200.63± 2.61

Picard1,230 28.45 200.60± 2.74

bamUtil ≥ 1440

ERP001231 biobambam 0.13 111.52± 0.77

bam2fastq 4.35 349.38± 1.18

bampe2fqworphans 3.48 229.80± 1.30

Picard 14.81 489.11± 4.40

bamUtil ≥ 1440

Run-time comparison of biobambam’s bamtofastq, bam2fastq,
bampe2fqworphans, Picard’s SamToFastQ and bamUtil’s bam2fastq for the data
sets ERR328876, ERR054938, ERR328190, SRP017681 and ERP001231 described
in Table 2 on compute farm nodes. For the data set SRP017681 bamtofastq
was run with a default hash table size of 218 and an increased size of 223 for
comparison. bamUtil dedup failed to process the data sets ERR328876,
ERR328190, SRP017681 and ERP001231 within the 24 hour limit. Picard used
close to 16 GB of memory for the data sets ERR328190 and SRP017681. We have
verified that no significant speed ups can be obtained by allowing more
memory in a reduced concurrency setting, where we have run only a single
process at a time using 16 or 230 GB of memory on an otherwise idle machine.
For both data sets the maximum amount of memory used by Picard when
provided with 230 GB was significantly less than what was available.
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do not benefit from using more memory. For
this data set bamUtil dedup outperforms
bammarkduplicates2 in speed by about 3.3%.

3. bammarkduplicates2 processes the file obtained
by mapping the reads from ERP001231 as described
above in 306 ± 2.9minutes using 453 MB of main
memory. Picard is not able to handle the file using
512 MB of RAM. With 832 MB it runs for 396 ± 3.9
minutes. For 4.06 GB the run-time slightly decreases
to 381± 1.9minutes. The experience with other data
sets suggests that a further increase of the memory
provided for the Java virtual machine will not lead to
a drastic decrease in run-time once the slope of the
run-time against space curve has reached a low value.
For this reason and in the light of the fact that the
comparison between biobambam and Picard is
already biased by the reduced amount of parallelism
available for Picard due to its high memory
requirements (i.e. we had to reduce the number of
concurrent Picard processes to get 4 GB for a single
one. As we will see later on in the paper a reduction
of the number of concurrently running processes
leads to a speed up of the single processes) we have
not tested Picard for higher amounts of memory on
this machine type. Picard’s MarkDuplicates fails to
process this file on the compute farm nodes due to

Table 5 Run-time comparison of bammarkduplicates2
and alternativeson compute farm nodes (part a)

Run-time comparison for BAM duplicate marking
on server blades

Data set Program Memory/GB Run-time/minutes

HG03520 biobambam 0.33 5.86± 0.42

Picard 7.96 13.80± 0.18

bamUtil 0.030 5.57± 0.37

ERR239642 biobambam 0.37 13.37± 0.51

Picard 9.26 26.25± 0.30

bamUtil 0.092 13.18± 0.35

ERR217514 biobambam 0.39 34.22± 0.58

Picard 13.15 46.15± 0.61

bamUtil 0.19 33.85± 0.53

ERR196957 biobambam 0.45 52.43± 0.92

Picard 11.53 90.74± 1.00

bamUtil 0.47 52.45± 1.56

HG00096 biobambam 0.43 78.76± 0.99

Picard 13.95 126.64± 1.37

bamUtil 0.35 76.18± 1.96

Run-time comparison of biobambam’s bammarkduplicates2, Picard’s
MarkDuplicates and bamUtil’s dedup for the data sets HG03520, ERR239642,
ERR217514, ERR196957 and HG00096 described in Table 2 on compute farm
nodes.

I/O patterns which are not compatible with the
employed file system (see below), so we were not able
to test it with amounts of memory exceeding 16 GB.
bamUtil dedup fails the admissibility test for this data
set. On the Xeon E7440 type machine given 10 GB of
RAM it fails with an out of memory type error after
running for more than 53 hours.

Table 6 Run-time comparison of bammarkduplicates2
and alternatives on compute farm nodes (part b)

Run-time comparison for BAM duplicate marking
on server blades

Data set Program Memory/GB Run-time/minutes

ERR328876 biobambam 0.45 212.38± 2.22

Picard 15.74 443.66± 1.77

Picard3,16 15.74 253.92± 1.67

Picard3,64 52.41 252.21± 1.11

bamUtil 1.20 207.29± 2.33

ERR054938 biobambam 0.45 210.16± 2.62

Picard 15.87 575.35± 3.07

Picard3,16 15.87 287.02± 2.19

Picard3,64 54.87 285.06± 1.27

bamUtil 7.12 401.90± 1.92

ERR328190 biobambam 0.45 289.00± 2.34

Picard ≥ 1440

bamUtil 16.73 914.81± 6.16

SRP017681 biobambam20 0.45 388.82± 2.57

biobambam24 6.31 332.38± 3.32

Picard 15.90 363.18± 2.63

Picard3,16 15.90 288.95± 1.32

Picard3,64 63.39 290.72± 1.62

bamUtil ≥ 1400

ERP001231 biobambam 0.45 729.98± 3.36

biobambam8 0.45 674.99± 11.93

Picard ≥ 1440

bamUtil ≥ 22.35

bamUtil8 23.85 916.62± 4.71

Run-time comparison of biobambam’s bammarkduplicates2, Picard’s
MarkDuplicates and bamUtil’s dedup for the data sets ERR328876, ERR054938,
ERR328190, SRP017681 and ERP001231 described in Table 2 on compute farm
nodes. For the data set SRP017681 bammarkduplicates2 was run with a
default hash table size of 220 and an increased size of 224 for comparison.
For ERP001231 bamUtil was only capable of processing the file using
23.85 GB ≈ 25.6 · 109 ≥ 24 · 109 bytes of memory. In consequence we needed
to reduce the number of concurrently running processes. We have reduced it
to 8 instead of 10. For comparison the table also contains the run-time of
bammarkduplicates2 for 8 instances running in parallel. Picard failed to
process the data sets ERR328190 and ERP001231 within the 24 hour limit due to
inefficient I/O. We have verified that these issues persist for larger amounts of
memory. Picard used close to the offered 16 GB of memory for the data sets
ERR328876, ERR054938 and SRP017681. We have verified that no significant
improvement in speed was available through the usage of more memory. For
this purpose we have run Picard on these data sets with 16 and 64 GB of
memory with a reduced concurrency of 3 parallel running identical processes.
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4. The BAM file obtained by mapping the reads from
the study SRP017681 as stated above is handled by
bammarkduplicates2 in time 152 ± 1.1minutes
using 311 MB of main memory. The run time
decreases to 138 ± 0.89 when the main memory
provided is increased to 2.54 GB. Picard’s
MarkDuplicates tool is not capable of handling the
file given 3 GB of memory, it aborts with an out of
memory type error. Given 4.05 GB it processes the
file in time 176 ± 0.97minutes, where as for
ERP001231 this already required a reduction of the
concurrently running Picard processes in
comparison with biobambam, thus leading to
reduced comparability. Further increasing the main
memory threshold to 8.06 GB and 12.07 GB
decreases its run time to 163 ± 0.92 and 161 ± 1.60
minutes respectively. A test on the compute farm
nodes shows that there is no further run-time
improvement when increasing the amount of
memory available from 12 to 64 GB (we measured
291 ± 2.75minutes for 12 GB and 290 ± 1.6minutes
for 64 GB using 3 parallel instances respectively).
Picard’s MarkDuplicates fails to run given 96 GB of
memory as it attempts to allocate an array which is
too large for the JVM system (Java limits the size of a
single array to 231 − O(1) for architectural reasons).
bamUtil dedup does not pass the admissibility test
for this data set. It fails with an out of memory type
error after more than 37 hours given 10 GB on the
Xeon E7440 machine.

The right column of Figure 6 shows the run-time
against internal memory trade offs as stated above
in the form of plots. If data sets containing a large
number of reads or a high sequencing depth can be

ruled out, then bamUtil dedup may be a viable choice
which can be expected to be a few percent faster
than bammarkduplicates2. In settings with variable
types of data which may be large or feature high depth
bamUtil dedup can fail on data sets which are easily
handled by bammarkduplicates2. Picard’s MarkDu-
plicates cannot keep up with bammarkduplicates2 in
both respects, run-time and RAM requirements.

Performance comparison forbamtofastq on server blades
For the comparison of program performance on server
blades we have used the data sets as specified in
Table 2. The files ERR239642 ([EMBL:ERR239642], [31]),
ERR217514 ([EMBL:ERR217514], [32]), ERR196957 ([EM
BL:ERR196957], [33]), ERR328876 ([EMBL:ERR328876],
[34]), ERR054938 ([EMBL:ERR054938], [35]) and ERR
328190 ([EMBL:ERR328190], [36]) which were used in
addition to the sets benchmarked on the PC system are
all available as BAM files from the ENA web site. The
set of data sets contains a large spectrum of file charac-
teristics from small to very large files and from low to
very high sequencing depth. The run-time and memory
comparisons can be found in Tables 3 and 4. bamU-
til’s bam2fastq failed on the files ERR328876, ERR328190,
SRP017681 and ERP001231 as it did not finish within
the 24 hour limit. bamtofastq with default settings is
the fastest program for all sets but SRP017681, where
bampe2fqworphans is faster. When the memory usage
of bamtofastq is increased to 2.5 GB, which is still
smaller than the 5.2 GB used by bampe2fqworphans, then
bamtofastq is also the fastest for this data set. The
lower performance of bamtofastq with default settings
can be attributed to the higher amount of data written to
temporary files for this high depth input file. The influ-
ence of this effect on the server blades is more prominent
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Figure 10 Dependence of BAM to FastQ run-time on number of concurrently running instances on the Xeon E5-2620machine. Plots
showing dependence of run-time on the number of concurrently running instances for biobambam’s bamtofastq, Picard’s SamToFastQ,
bamUtil’s bam2fastq, bampe2fqworphans and bam2fastq for the data sets HG03520 and HG00096 on the Xeon E5-2620 system.
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Table 7 Slow down of BAM to FastQ conversion due to concurrency on the Xeon E5-2620machine

Data set biobambam bam2fastq bampe2fqworphans Picard bamUtil

HG03520 1.65 1.68 1.70 2.80 1.87

HG00096 1.64 1.70 1.74 2.78 1.87

Ratio of run-time between24 and 1 concurrently running instances of biobambam’s bamtofastq, bam2fastq, bampe2fqworphans, Picard’s SamToFastq and
bamUtil’s bam2fastq on the Xeon E5-2620 machine for the data sets HG03520 and HG00096.

than on the PC system due to the fast temporary space on
the PC. As Picard runs in a Java virtual machine the mem-
ory stated in Tables 3 and 4 is generally more than the
program would require as a minimum. For the data sets
ERR328190 and SRP017681 the amount of memory used
by Picard was close to the amount we have provided. For
this reasonwe have determined the possible gains in speed
by providing additional memory. We have run Picard on
the data sets without concurrency using 16 and 230 GB
of memory. For both data sets the speed up obtained was
marginal (see Tables 3 and 4).

Performance comparison forbammarkduplicates2 on
server blades
We have used the same data sets for comparing
bammarkduplicates2 on server blades as we have
used for the comparisons concerning bamtofastq. As
on the PC system we have compared with bamUtil’s
dedup option and Picard’s MarkDuplicates program. The
run-time comparisons are shown in the Tables 5 and 6.
bammarkduplicates2 was the only of the programs
which was capable of handling all the input files. bamU-
til dedup failed on the files SRP017681 and ERP001231.
For SRP017681 its run-time exceeded 24 hours, for
ERP001231 it required more than 24 GB of memory. It
is capable of processing the file ERP001231 with more
memory (see Table 6) when the number of concurrently

running processes is reduced from 10 to 8 and in conse-
quence the amount of memory available per instance is
higher. However the run-time obtained in this way is not
competitive with biobambam. Picard’s MarkDuplicates
failed to process the files ERR328190 and ERP001231,
in both cases the run-time of the program exceeded
24 hours. For both files Picard was suffering from file
access patterns which are very inefficient on the employed
Lustre file system. A system call trace showed a very
large number of small write operations with as little as a
single byte per call. On the lower depth files HG03520,
ERR239642, ERR217514, HG00096 and ERR328876 the
average run-time of bamUtil dedup is slightly lower than
the run-time of bammarkduplicates2. However the
difference between the two programs is small for the
two programs at a maximum of 5.2% on the smallest
file HG03520 and even lower for the other files. For
most of these cases (all but ERR328876) the confidence
intervals for the run-time of the two programs over-
lap. For the files ERR196957, ERR054938, ERR328190
and ERP001231 bammarkduplicates2 has the low-
est average run-time using its default settings where for
ERR196957 the confidence interval overlaps with bamU-
til dedup. Picard MarkDuplicates is slightly (7%) faster
than bammarkduplicates2 running with default set-
tings for the file SRP017681, but this changes when
bammarkduplicates2 is allowed to use more memory
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Figure 11 Dependence of BAM to FastQ run-time on number of concurrently running instances on compute farm nodes. Plots showing
dependence of run-time on the number of concurrently running instances for biobambam’s bamtofastq, Picard’s SamToFastQ, bamUtil’s
bam2fastq, bampe2fqworphans and bam2fastq for the data sets HG03520 and HG00096 on compute farm type system.
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Table 8 Slow down of BAM to FastQ conversion due to concurrency on compute farm nodes

Data set biobambam bam2fastq bampe2fqworphans Picard bamUtil

HG03520 1.96 2.88 6.29 1.73 2.53

HG00096 1.96 2.61 5.19 1.74 2.56

Ratio of run-time between 32 and 1 concurrently running instances of biobambam’s bamtofastq, bam2fastq, bampe2fqworphans, Picard’s SamToFastq and
bamUtil’s bam2fastq on compute farm nodes for the data sets HG03520 and HG00096.

than by default. In summary bammarkduplicates2 is
the only program which is capable of handling all the files
within the given limits of 24 hours and 24 GB of mem-
ory. bamUtil dedup has a slight run-time advantage of up
to 5% for small and low depth larger files but fails for
more complex higher depth files. Picard is consistently
slower than bammarkduplicates2 with default set-
tings on all files but SRP017681 and slower on all files
when the amount of used memory is at the same level.
Some files trigger input/output patterns in Picard which
are not suitable for network file systems. As Picard used
close to all of the memory provided for some of the
data sets, we have verified that no speed ups were avail-
able through the usage of more memory (see Table 6).
This involved a reduction of the number of concurrently
running instances from 10 to 3, where we increased the
amount of available memory per process to 64 from 16 GB
(as mentioned above Picard duplicate marking fails when
given too much memory. In our setting 96 GB qualified as
too much).

Dependence of BAM to FastQ conversion time on the number
of concurrently running instances
We have used the files HG03520 and HG00096 as
described above (see Table 1) to determine how the
number of concurrently running program instances
changes the run-time of our test programs in BAM to

FastQ conversion. As above we have tested biobambam’s
bamtofastq, Picard’s SamToFastq, bamUtil’s bam2fastq
module, bampe2fqworphans and bam2fastq. Figure 10
shows how the run-time of the programs depends on
the number of parallel instances on the Xeon E5-2620
machine for the two data sets. As the figure shows,
the rank of each program in the performance order
is identical for each number of concurrently running
instances, i.e. biobambam’s bamtofastq is always the
fastest, bampe2fqworphans is always second fastest etc.
The ratios of the run-times of the programs between 24
concurrent instances and 1 concurrent instance are shown
in Table 7 (the entry 1.65 e.g. means when processing the
file HG03520 each single instance of 24 concurrently run-
ning instances of biobambam’s bamtofastq was run-
ning by a factor of 1.65 slower than a single instance
running alone on the machine). In this scenario Picard’s
Java implementation was suffering the most from concur-
rently running instances with a slow down of 2.8 while
biobambam’s bamtofastq is consistently the fastest
solution and suffers the least from running in a busy
environment.
Figure 11 shows a comparison of the same programs

on the same data sets on compute farm nodes. The plots
show runs ranging from 1 to 32 concurrently running
instances. In these plots we observe sharp increases of the
bampe2fqworphans program run-time when going from
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Plots showing dependence of run-time on the number of concurrently running instances for biobambam’s bammarkduplicates2, Picard’s
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Figure 13 Dependence of BAM duplicate marking run-time on number of concurrently running instances on compute farm nodes. Plots
showing dependence of run-time on the number of concurrently running instances for biobambam’s bammarkduplicates2, Picard’s
MarkDuplicates and bamUtil’s dedup for the data sets HG03520 and HG00096 on the compute farm type system.

24 to 32 concurrently running instances. It is beyond
the scope of this paper to exactly determine the reason
for this, but we consider it as likely that the program
saturates the I/O system with read system calls of inef-
ficiently small block sizes. Table 8 shows the run-time
ratios between 32 and 1 concurrently running program
instances. In this case Picard has the smallest relative
losses through concurrency with biobambam in second
place. In absolute run-times however biobambam running
on a full machine is faster than Picard running on an oth-
erwise idle machine. Again biobambam’s bamtofastq is
the fastest solution for any amount of concurrency.

Dependence of BAM duplicatemarking time on the number
of concurrently running instances
As above for BAM to FastQ conversion we have tested
the effects of concurrently running instances on dupli-
cate record marking in BAM files using biobambam’s
bammarkduplicates2, Picard’s MarkDuplicates and
bamUtil dedup on the data sets HG03520 and HG00096.
The results are presented in the forms of plots in
Figures 12 and 13 for the Xeon E5-2620 system and the
compute farm nodes respectively. Tables 9 and 10 show
the run-time ratios between running a maximum number
of concurrent instances and running a single instance of a

Table 9 Slow down of BAM duplicatemarking due to
concurrency on the Xeon E5-2620machine

Data set biobambam Picard bamUtil

HG03520 1.61 1.71 1.62

HG00096 1.60 1.70 1.59

Ratio of run-time between 24 and 1 concurrently running instances of
biobambam’s bammarkduplicates2, Picard’s MarkDuplicates and bamUtil’s
dedup on the Xeon E5-2620 machine for the data sets HG03520 and HG00096.

program for the respective settings. Most of the runs on
the Xeon E5-2620 for 16 and 20 parallel instances show a
high variance in run-time. This variance can be explained
by observing that some of the running instances were
sharing a hyper threading CPU core while others were
running on an otherwise idle CPU core. Apparently hyper
threading offers less of the required parallelism in this case
as for the BAM to FastQ conversion case. On this system
the slow down occurring due to concurrency is fairly con-
sistent across all programs as shown in Table 9. On the
compute farm nodes the systematic variance in run-time
seen on the Xeon E5-2620 system does not occur as only
full CPU cores are used. The run-time development for
biobambam and bamUtil is almost identical. Picard suffers
muchmore heavily from increased concurrency. One pos-
sible explanation is the larger amount of I/O performed by
Picard due to list building and sorting in external memory.

Conclusions
In this paper we have presented efficient algorithms and
data structures for name collated BAM file input. We
have provided an implementation of these in libmaus,
an open source programming library for C++. As part
of the biobambam package we have developed two tools
bamtofastq and bammarkduplicates2 based on

Table 10 Slow down of BAM duplicatemarking due to
concurrency on compute farm nodes

Data set biobambam Picard bamUtil

HG03520 1.86 3.90 1.88

HG00096 1.88 2.60 1.91

Ratio of run-time between 32 and 1 concurrently running instances of
biobambam’s bammarkduplicates2, Picard’s MarkDuplicates and bamUtil’s
dedup on compute farm nodes for the data sets HG03520 and HG00096.
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the API. bamtofastq is faster than all widely known
competitors while using only small amounts of RAM.
bammarkduplicates2 is close the performance of
bamUtil dedup on small data sets while easily handling
larger and more complex data sets for which bamUtil
dedup fails and it outperforms the duplication mark-
ing tool of Picard in both speed and memory aspects.
biobambam is well suited for environments running many
instances of the problems solved concurrently.

Availability and requirements
Project name: biobambam/libmaus
Operating systems: Linux and MacOS X
Programming language: C++
Other requirements: none
License: GPL3
Any restrictions to use by non-academics: none

Endnote
aunless otherwise stated we use MB and GB to denote

220 and 230 bytes respectively in this paper.
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