Orsini and Carcangiu Source Code for Biology and Medicine 2013, 8:4
http://www.scfbm.org/content/8/1/4

SOURCE CODE FOR
BIOLOGY AND MEDICINE

BlaSTorage: a fast package to parse, manage and

store BLAST results

Massimiliano Orsini” and Simone Carcangiu

Abstract

over them.

Background: Large-scale sequence studies requiring BLAST-based analysis produce huge amounts of data to be
parsed. BLAST parsers are available, but they are often missing some important features, such as keeping all
information from the raw BLAST output, allowing direct access to single results, and performing logical operations

Findings: We implemented BlaSTorage, a Python package that parses multi BLAST results and returns them in a
purpose-built object-database format. Unlike other BLAST parsers, BlaSTorage retains and stores all parts of BLAST
results, including alignments, without loss of information; a complete AP/ allows access to all the data components.

Conclusions: BlaSTorage shows comparable speed of more basic parser written in compiled languages as C++ and
can be easily integrated into web applications or software pipelines.

Keywords: BLAST, Blast parser, Python-package, Serialized python object

Findings

Today, it is quite common in computational biology to
be working with large sequence datasets. An operation
that often needs to be performed is the search by simi-
larity. The tools for these similarity-based searches are
often based on BLAST-core [1,2], except for software
specialized for short reads. The output of BLAST is
based on sets of pairwise alignments between query and
reference sequence(s), along with some metadata about
the alignments such as e-value, similarity score, query
name, etc. Running with multiple inputs, BLAST pro-
duces a results file for each sequence queried or, alterna-
tively, a unique multi-result file. As the input increases
in number and size of queries, manual inspection of
BLAST results quickly becomes an impractical proced-
ure. The problem is accentuated when results have to be
assessed, compared, or passed to other software tools.
BLAST parsers can then be used to automatically filter
results by some criteria or to eliminate unneeded fields
from records (for example: subject title, similarity, iden-
tity). To overcome the limits of simply storing results in
flat files, they could be placed in a relational database,

* Correspondence: orsini@crs4.it
CRS4, Bioinformatics Group, Loc Pixina Manna, Pula 09010, ITALY

( BioMVed Central

but that approach adds significant complexity to the
system.

Parsers can be roughly divided into three main analysis
style: i) by Model (Pull parsing), ii) by Events (Push pars-
ing), iii) hybrid. Pull parsers work reading the entire
document creating an internal representation of the
whole document. On the other hand, Push parsers read
the data incrementally. Hybrid parsers represent a com-
promise between the two other approaches, loading only
a block of the document at a time and leaving it up to
the application code to decide when to ask for another
block. None of these approaches is generally better than
the others; rather, each is better suited for different types
problems.

There exist several well-known, stand alone BLAST
parsers: BioPerl [3], MuSeqBox [4], Zerg [5] and its Perl/
Python wrappers [6], Boulder [7]. They are hybrid par-
sers, more closely resembling the Pull approach since in
case of multi-BLAST results they need to iterate over
the entire document to access to extract data.

We present a new BLAST parser called BlaSTorage. Its
development was motivated by the need to interpret a
very large amount of BLAST results without losing any
part of the data they contain, and the need to query the
BLAST result sets. The BlaSTorage parsing algorithm was
developed paying close attention to the computation time

© 2013 Orsini and Carcangiu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:orsini@crs4.it
http://creativecommons.org/licenses/by/2.0

Orsini and Carcangiu Source Code for Biology and Medicine 2013, 8:4
http://www.scfbm.org/content/8/1/4

it requires. It could be considered a hybrid parser, since it
reads over the BLAST result stream like a Push parser dur-
ing the reading and storing phase. Then, once the results
have been completely scanned it generates a model of the
entire result set, similarly to Pull parsers. The BlaSTorage
engine extracts the various sections of each result by apply-
ing a number of simple regular expressions. It then con-
verts each section’s data to a serialized python object and
stores all these to a single special database file. A complete
API allows the user to access to every part of this database
to query it (a simple example is given in the next para-
graph). Moreover, the AP/ throws exceptions to help the
application manage incomplete or corrupted results and
generate useful error messages. The BlaSTorage module is
available at the following URL: http://biowiki.crs4.it/bio-
wiki/MassimilianoOrsini

To evaluate BlaSTorage’s performance we compared it
to other publicly available stand-alone parsers (Table 1).
We measured the time taken by each program to parse
three blastp results files of growing sizes (see Table 1
legend). BlaSTorage resulted about two orders of magni-
tude faster than other parsers that retain alignments and
allow database-like querying, such as Boulder and BioPerl.
BlaSTorage was about one order of magnitude faster, at
least with large files, than MuSeqBox, which is written in
C++, and it was slightly faster than Zerg:Report, a Perl
module for BLAST reports; it is important to note that
none of these latter parsers retain alignments. BlaSTorage
showed slightly lower speed than Zerg-Perl and Pyzerg,

Table 1 BlaSTorage comparative performances

Parser DB Alignm. 123mb* 180mb * 1.8gb *
(language) retain

boulder yes yes 213+15 - -

(perl)

Bio:SearchlO no  yes 27+03 1495+ 12 148506
(perl)

MuSeqgBox no no 0.73£004 5521+£15 -

(C++)

Zerg:Report no no 147+£0.12 1223+08 -
Blastorage yes yes 14+08 37.9%0.13 490+ 12
(python)

zerg (perl) no no 036+001 26.7+0.16 341+6
Pyzerg no no 035£003 2443+03 312+13
Zerg C*) no no 008+00 201+004 74+7
blastp

output, STD

over five

replicates

In this table are shown results of some of the most popular stand-alone BLAST
parsers. The time taken (seconds) to parse different blastp output files was
measured in five separate runs using a laptop with 2 Gb RAM, 2 CPU, 1.83 Ghz
and an intel centrino processor. Missing values are referred to tests where the
program crashed or was terminated after 24 hours of unproductive work
(extensive tests in supplementary material).

Page 2 of 5

two interfaces to Zerg C libraries written in Perl and
Python respectively [6], and obviously was slower than the
Zerg-C parser [5] which is implemented in C. Yet, unlike
BlaSTorage, none of the mentioned Zerg-based parsers
are able to retain alignment information or access a spe-
cific result of a multi-blast output.

The design of BlaSTorage offers some advantages over
many other available parsers. First, it allows one to re-
tain the alignment part of the BLAST results, which is
usually discarded. Second, it can be easily included in
pipelines and web applications by using methods in the
apipy and manage.py modules (the latter contains
methods to export parsed/filtered results toward the
standard output or to a file, see Additional file 1 for
some examples). Third, the storage object structure,
together with api and manage classes, implement a
database-like access to the results, with the possibility of
applying logical operations (the manage class contains
methods to filter, select and sort results using an SQL-
like syntax; see Additional file 1 supplementary material
for some examples). Finally, once the BlaSTorage data-
base is built and written to disk, the user can access it
directly, without re-parsing the BLAST output file; this
approach results in great time savings. The ability of
BlaSTorage to scale with large files is highlighted by our
performance tests (Additional file 1 ), It has proven to
be a helpful tool when alignments have to be analyzed
or when results have to be accessed in random order.
In applications where these features are not important
other faster tools should be considered. One limitation
of the current version of BlaSTorage is that it is not
compatible with all BLAST versions; it currently works
well with versions up to and including 2.2.26+. The
current release works with the blastp, blastn, blastx and
psiblast programs, and we are working to extend it to
also tblastx and tblastn.

Two graphical BLAST parsers have to be cited for com-
pleteness, but have been excluded from our tests since
their features are not directly comparable. The first of
these, Batch Blast Extractor [8], has a user-friendly GUI to
present information from BLAST output and can produce
a tab-delimited text which can be used for downstream
analysis. However, it does not return the alignments. The
second, NOBLAST-JAMBLAST [9], is more of a results
manager than a feature-complete parser. Nevertheless, it
shows a plethora of features including some statistical
treatment of data. It uses the new tabular output of BLAST
(-m 18/19, not present in older releases) that contains the
alignments, and together with the JAMBLAST program it
provides a complete graphical interface to filter and man-
age BLAST results. Alas, NOBLAST requires a MySQL
database to be installed and working knowledge of SQL to
perform logical operations on results. For these reasons
we did not consider these two packages as competitors


http://biowiki.crs4.it/biowiki/MassimilianoOrsini
http://biowiki.crs4.it/biowiki/MassimilianoOrsini

Orsini and Carcangiu Source Code for Biology and Medicine 2013, 8:4
http://www.scfbm.org/content/8/1/4

of BlaSTorage, since we believe that they solve different
problems. In our opinion, graphical applications are use-
ful when handling a small quantities of data or as tools for
users who are not comfortable with programming. Al-
though BlaSTorage can be used by command line in a
relatively intuitive way through its APJ, its principal design
goal was for it to be easily included into pipelines or web
applications. For example, in our laboratory BlaSTorage is
systematically used to evaluate contigs obtained by de novo
assembly of RNA-seq data. In this kind of application
assembled contigs are blasted against well-known reference
transcriptomes generating output files of about 1-1.5 GB
in size. BlaSTorage has also been used in the Pariga
server (http://resources.bioinformatica.crs4.it/pariga/, un-
published), a web application that performs all-against-all
BLAST searches given two sequence datasets, mainly
designed for ortholog discovery. In this particular imple-
mentation of BlaSTorage has been optimized by storing
data with PyObjCTools rather than the standard shelve li-
braries. This change results in improved performance at
the cost of the inconvenience of having to write a db-
storage file for each input sequence. For the standard ver-
sion of BlaSTorage we decided this inconvenience was not
acceptable, since multiple output files can generate confu-
sion and add complexity, especially with large jobs.

BlaSTorage is optimized for speed and scalability in
order to be able to manage large amounts of results
without loss of information. A simple API allows acces-
sing the database at run-time or any later time.

A short interactive example

>>> from blastorage import Storage

>>> dbFile = 'blast.db’ # database filename

>>> inFile = 'blastResTest.blast'# blast results file name
>>> st = Storage(dbFile, inFile)

>>> st.store()

>>> api = st()

>>> print api.getGenerallnfo()

Database: uniref100

Posted date: May 30, 2007 11:40 PM

.............. (continue)

>>> for blast in api: #One BlastResult for each query

... print blast.getQueryTitle(). . .
tgp_o021.Contig7

tgp_021.Contig32

.............. (continue)

Page 3 of 5

>>> for blast in api:
... for iteration in blast: # multiple results in case of
psiblast
. for align in iteration: #One Alignment for each
subject
... print align.getSubjectTitle(). . .
UniRef100_Q2IMJ3
UniRef100_Q2ITH7
.............. (continue)
>>> for blast in api:
... for iteration in blast: # multiple results in case of
psiblast
... for align in iteration:
... for hsp in align: # One Hsp for each align
... print hsp.getGradesAsString|(). . .
Score = 166 bits (419), Expect = 3e-39
Identities = 168/468 (35%), Positives = 184/468 (39%),
Gaps = 69/468 (14%)
Score = 157 bits (397), Expect = 1e-36
Identities = 165/474 (34%), Positives = 180/474 (37%),
Gaps = 79/474 (16%)
.............. (continue)
>>> st.close()
#Once you closed the storage it can be accessed later:
>>> st = Storage('blast.db’)
>>> api = st()
>>> etc. ..
#Filtering and Exporting Data using manage package
>>> from manage import Manager
>>> M = Manager(api)
>>> M.selectBlastResWhereEvalueLowerThan(0.001,
header=True)
##query | iter | subject | e-value
ENSMUSP00000000095 0 UniRef100_E4Y6N2 1e-85
ENSMUSP00000000095 0 UniRef100_Q6J4Z5 1e-85

... (continue)


http://resources.bioinformatica.crs4.it/pariga/

Orsini and Carcangiu Source Code for Biology and Medicine 2013, 8:4
http://www.scfbm.org/content/8/1/4

ENSMUSP00000000095 0 UniRef100_GOWKX4 2e-81
ENSMUSP00000000095 0 UniRef100_Q90WR1 1e-80
... (continue)

retrieved 2500 results; query time: 2.09233503342 sec-
onds >>>

>>> M.selectBlastresWhereldentityPercentageHigh-
erThan(80, header=True)

##query | iter | subject | Ident.%
ENSMUSP00000000095 0 UniRef100_H9G432 95.0
ENSMUSP00000000095 0 UniRef100_Q70WD3 91.0
ENSMUSP00000000095 0 UniRef100_EOVMZ8 80.0
ENSMUSP00000000095 0 UniRef100_B1V8P8 90.0
ENSMUSP00000000095 0 UniRef100_B7PT63 88.0
... (continue)

ENSMUSP00000000095 0 UniRef100_Q535V1 89.0
ENSMUSP00000000095 0 UniRef100_Q90WR1 97.0
retrieved 853 results; query time: 1.72032017708 seconds
>>>

>>> M.sortBlastresByldentityPercentage()

##query | iter | subject | Ident.%
ENSMUSP00000000145 0 UniRef100_Q5F2C5 100.0
ENSMUSP00000000145 0 UniRef100_Q8R1X1 89.0
ENSMUSP00000000145 0 UniRef100_Q91WC3 89.0
ENSMUSP00000000145 0 UniRef100_Q5ICG6 89.0
ENSMUSP00000000145 0 UniRef100_AS8IP90 89.0

... (continue)

ENSMUSP00000000145 0 UniRef100_Q9UKUO-2 81.0
ENSMUSP00000000145 0 UniRef100_F7GMDS5 81.0
ENSMUSP00000000001 0 UniRef100_Q9DC51 100.0
ENSMUSP00000000001 0 UniRef100_P08753 99.0
ENSMUSP00000000001 0 UniRef100_Q3TJH1 99.0
... (continue)

ENSMUSP00000000001 0 UniRef100_B5X3R5 89.0
ENSMUSP00000000001 0 UniRef100_Q4SACO 82.0
ENSMUSP00000000096 0 UniRef100_P70325 100.0
ENSMUSP00000000096 0 UniRef100_D4A0A2 97.0

... (continue)

Page 4 of 5

ENSMUSP00000000028 0 UniRef100_E1FWQ3 23.0
retrieved 2500 results; query time: 1.08432006836 seconds
# direct access to a given result

>>> M.selectBlastresWhereQueryldEqualTo
(ENSMUSP00000000145', header=True)

##queryid len descr round subjectid eval align ident.
Pos. gaps

ENSMUSP00000000145 622 0 UniRef100_Q5F2C5 0.0
622 100.0 100.0 0

ENSMUSP00000000145 622 0 UniRef100_Q8R1X1 0.0
622 89.0 89.0 75

ENSMUSP00000000145 622 0 UniRef100_Q91WC3 0.0
622 89.0 89.0 75

ENSMUSP00000000145 622 0 UniRef100_Q5ICG6 0.0
621 89.0 89.0 75

ENSMUSP00000000145 622 0 UniRef100_A8IP90 0.0
621 89.0 89.0 75

ENSMUSP00000000145 622 0 UniRef100_Q6IU14 0.0
604 87.0 87.0 75

ENSMUSP00000000145 622 0 UniRefl100_H2M5V7 0.0
349 55.0 72.0 45

ENSMUSP00000000145 622 0 UniRef100_H3CZQ8 0.0
345 55.0 73.0 43

ENSMUSP00000000145 622 0 UniRefl00_H3CZQ7 0.0
344 55.0 73.0 43

ENSMUSP00000000145 622 0 UniRef100_D3ZW20 0.0
351 56.0 73.0 45

ENSMUSP00000000145 622 0 UniRefl00_H2SDA4 0.0
351 55.0 71.0 57

retrieved 251 results; query time: 0.2691218853 seconds
>>> M.selectBlastresWhereSubjectldEqualTo('Uni-
Ref100_G5BKD1', header=True)

##queryid round subjectid eval align ident. Pos. gaps
ENSMUSP00000000145 0 UniRefl00_G5BKD1 0.0 362
58.0 75.0 41

retrieved 1 results; query time: 0.097626886368 seconds



Orsini and Carcangiu Source Code for Biology and Medicine 2013, 8:4
http://www.scfbm.org/content/8/1/4

Additional file

[ Additional file 1: BlaSTorage Manual. ]

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MO conceived of the project, wrote and refined some Python classes and
drafted the manuscript. SC developed the software and performed the tests.
All authors have read and approved the final manuscript.

Received: 3 March 2012 Accepted: 29 January 2013
Published: 30 January 2013

References
1. McGinnis S, Madden TL: BLAST: at the core of a powerful and diverse set
of sequence analysis tools. Nucleic Acid Res 2004, 32:W20-W25.

2. Altschul SF, Madden TL, Schéffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:

Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Res 1997, 25:3389-3402.

BioPerl. [http://www.bioperl.org].

4. Xing L, Brendel V: Multi-query sequence BLAST output examination with
MuSeqBox. Bioinformatics 2001, 17:744-745.

5. Paquola AC, Machado AA, Reis EM, Da Silva AM, Verjovski-Almeida S: Zerg:
a very fast BLAST parser library. Bioinformatics 2003, 19:1035-1036.

6.  LibZerg. [http://code.google.com/p/libzerg/].

7. Boulder:Blast. http://stein.cshl.org/software/boulder/.

8. Pirooznia M, Perkins EJ, Deng Y: Batch Blast Extractor: an automated
blastx parser application. BMC Genomics 2008, 9(Suppl 2):S10.

9. Lagnel J, Tsigenopoulos CS, lliopoulos I: NOBLAST and JAMBLAST: New
Options for BLAST and a JAVA Application Manager for BLAST results.
Bioinformatics 2009, 25:824-826.

w

doi:10.1186/1751-0473-8-4

Cite this article as: Orsini and Carcangiu: BlaSTorage: a fast package to
parse, manage and store BLAST results. Source Code for Biology and
Medicine 2013 8:4.

Page 5 of 5

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central



http://www.biomedcentral.com/content/supplementary/1751-0473-8-4-S1.pdf
http://www.bioperl.org/
http://code.google.com/p/libzerg/
http://stein.cshl.org/software/boulder/

	Abstract
	Background
	Findings
	Conclusions

	Findings
	A short interactive example

	Additional file
	Competing interests
	Authors’ contributions
	References

