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Abstract

Models written in description languages such as CellML are becoming a popular solution to the handling of complex
cellular physiological models in biological function simulations. However, in order to fully simulate a model, boundary
conditions and ordinary differential equation (ODE) solving schemes have to be combined with it. Though boundary
conditions can be described in CellML, it is difficult to explicitly specify ODE solving schemes using existing tools. In
this study, we define an ODE solving scheme description language-based on XML and propose a code generation
system for biological function simulations. In the proposed system, biological simulation programs using various ODE
solving schemes can be easily generated. We designed a two-stage approach where the system generates the
equation set associating the physiological model variable values at a certain time t with values at t + �t in the first
stage. The second stage generates the simulation code for the model. This approach enables the flexible construction
of code generation modules that can support complex sets of formulas. We evaluate the relationship between models
and their calculation accuracies by simulating complex biological models using various ODE solving schemes. Using
the FHN model simulation, results showed good qualitative and quantitative correspondence with the theoretical
predictions. Results for the Luo-Rudy 1991 model showed that only first order precision was achieved. In addition,
running the generated code in parallel on a GPU made it possible to speed up the calculation time by a factor of 50.
The CellML Compiler source code is available for download at http://sourceforge.net/projects/cellmlcompiler.

Introduction
In recent years, the continued development in computer
processing power paved the way for the increased use of
biological function simulation. Computers have proven
to be invaluable in analysing complex and nonintuitive
biological models and biologists are turning to them to
complement their experiments. Simulations enable the
testing of experimentally unfeasible scenarios and can
potentially reduce experimental costs. However, the num-
ber and complexity of physiological models has also
grown with the increase in computing performance. This
creates challenges in reproducing simulated behaviours
of the published models and reuse of models by other
researchers, hindering the dissemination of science and
knowledge integration.
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One way to address model complexity is to use markup
language-based model descriptions. Some popular exam-
ples include CellML [1], SBML (Systems Biology Markup
Language) [2] and insilicoML [3]. CellML is an open stan-
dardmarkup language capable of describingmathematical
models of cellular functions. SBML is an open interchange
machine-readable format for representingmodels of func-
tions such as metabolism and cell signalling. Meanwhile,
insilicoML describes mathematical models for biophysi-
cal objects and incorporates morphological information
such as shape, angle and position. SED-ML (Simulation
Experiment Description Language) [4] is another type
of description language which can encode the informa-
tion of simulation experiments. These markup languages
allow researchers to take advantage of the vast amount of
biological function models using a common set of easily
readable and versatile description rules.
Biological and physiological function models are gener-

ally described by differential equations. A typical simula-
tion of biological function models consists of three parts:
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a model equation, a boundary condition, and an ordi-
nary differential equation (ODE) solver. Model equations
and boundary conditions can be described using CellML,
while ODE numerical solutions like Euler and Runge-
Kutta methods are typically built into the simulation soft-
ware. However, it is necessary to be flexible in using ODE
schemes in order to strike a balance between computa-
tional stability and speed. In addition, those using special
hardware environments such as massively parallel com-
puter systems require dedicated proprietary software to
support their numerical solution needs. Thus, description
languages like CellML and dedicated simulation software
are not suitable or practical for flexibly incorporating
different ODE solving schemes.
To address the need for more flexibility in creating

simulation software, we created Time Evolution Calcu-
lation Markup Language (TecML), a machine-readable
format for encoding ODE numerical solutions. TecML is
a description language based on the extensible markup
language (XML). This description language is designed to
specify and store the numerical methods that can be used
for solving the ODEs in biological models. It also allows
the assignment of boundary conditions into the simula-
tion experiments. The following sections describe TecML
and how it is integrated into the proposed code generation
system, which automatically generates codes for biological
simulations.
The target of this study is limited to the use of different

ODE numerical solutions and their application to models
described in CellML.We propose an algorithm that allows
users to change the ODE solution and boundary condi-
tions of the model according to the computational needs
of their simulation. To verify the effectiveness of the pro-
posed system, we generate executable codes for several
CellML models using a number of ODE numerical solu-
tions. The system can generate code in several program-
ming languages and code that runs in both sequential and
parallel computing environments. Simulations on GPU
(Graphics Processing Units) were undertaken to show the
effect of using parallel computing on processing time.

Biological simulation code generation system
Summary of simulation code generation system
The proposed method is composed of two stages
(Figure 1). In the first stage, the system represents the
biological model by incorporating an ODE numerical
solution method into the model’s differential equations.
This creates the equation sets that calculate the time
evolution of the mathematical model. The second stage
generates the simulation code for these sets of equations,
allowing the user to run computer simulations of the
model in machines with general-purpose compilers. This
approach enables the flexible construction of code gener-
ationmodules that can support complex sets of equations.

By generating the code separately for each section of the
mathematical model, parallel code execution can be easily
integrated into the simulation.
To illustrate the capabilities of the proposed system, we

used the FitzHugh-Nagumo (FHN) excitable media model
[5] as an example. The model, proposed by R. FitzHugh
in 1961 and which J. Nagumo et al. created an equivalent
circuit, is a simplification of the Hodgkin-Huxley model
and can be described by the following equations:

r = x3, (1)
dx/dt = x − r/3.0 − y + a, (2)
dy/dt = b(x + c − d · y), (3)

where r, x and y are variables, t indicates time and a, b,
c, d are constants. Removable algebraic expressions such
as equation (1) are often used in biological models to
improve the model’s readability.
As for the ODE numerical solution, we used the Mod-

ified Euler method to solve the ODEs in (2) and (3). By
combining a mathematical description of the model above
with the ODE solution method and boundary conditions,
we can derive the formula to calculate the time evolution
of the independent variables x and y. This involves finding
the solution to the variable vector ξ using its derivatives,
temporal variable vector ι, and initial conditions at time t
given by

dξ/dt = f (t, ξ , ι), (4)
ι = g(t, ξ). (5)

The rest of this section shows how the proposed sys-
tem incorporates the Modified Euler method into the
model equations to calculate for ξ . The following set of
equations represent the numerical solution with boundary
conditions:

ξ0 = ξt , (6)
t0 = t, (7)
ι0 = g(t0, ξ0), (8)
κ1 = f (t0, ξ0, ι0), (9)
ξ1 = ξ0 + κ1 · δ, (10)
t1 = t0 + δ, (11)
ι1 = g(t1, ξ1), (12)
κ2 = f (t1, ξ1, ι1), (13)

ξ2 = ξ0 + 1
2
(κ1 + κ2) · δ, (14)

ξ t+δ = ξ2, (15)

where ξ , κ and ι are the vectors representing the variables
and differential equations in the biological model.
By applying the ODE solver described above, we can

arrive at the set of equations detailing the numerical solu-
tion for the initial value problem of the FHN model.
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Figure 1 Code generation system inputs and outputs. Input and output of the Biological Simulation Code Generation System. The inputs are
composed of a CellML, TecML, and RelML file. The system can generate simulation codes in C/C++, Java, and Cuda C programming language.

First, from equations (6) and (7), the current values of
the differential variables at t are assigned as the initial
values with

x0 = xt , (16)
y0 = yt , (17)
t0 = t. (18)

Then with equations (8) and (9), the differential and
nondifferential equations are expanded and evaluated
using these initial values to obtain

r0 = g1(t0, [ x0 y0]T ) = x30, (19)
κ1,x = f1(t0, [ x0 y0]T , r0)

= x0 − r0/3.0 − y0 + a, (20)
κ1,y = f2(t0, [ x0 y0]T , r0)

= b(x0 + c − d · y0). (21)

Next, the new values of x and y are computed as func-
tions of κ1 and δ (equations (10) and (11)) and given
by

x1 = x0 + κ1,x · δ, (22)
y1 = y0 + κ1,y · δ, (23)
t1 = t0 + δ. (24)

This process is repeated for r1 and κ2 as shown in
equations (12) and (13);

r1 = g1(t1, [ x1 y1]T ) = x31, (25)
κ2,x = f1(t1, [ x1 y1]T , r1)

= x1 − r1/3.0 − y1 + a, (26)
κ2,y = f2(t1, [ x1 y1]t , r1)

= b(x1 + c − d · y1). (27)

Finally, the value of the differential variables are
obtained by advancing the solution from time t to t + δ

(equations (14) and (15)) with

x2 = x0 + 1
2
(κ1,x + κ2,x) · δ, (28)

y2 = y0 + 1
2
(κ1,y + κ2,y) · δ, (29)

xt+δ = x2, (30)
yt+δ = y2. (31)

The variable r of the equation set corresponds to ι while
x and y are the variables in the vector ξ . The deriva-
tives dx/dt and dy/dt are expressed by κ in equations
(20), (21), (26) and (27).
In order to automatically incorporate the ODE numer-

ical solution into the CellML model, we introduced
an ODE solving scheme description language called
Time Evolution Calculation Markup Language (TecML).
TecML is an XML-based description language that can be
used to configure ODE solutions and implement the algo-
rithm described in equations (6) – (15). Another input of
the system is the Relation Markup Language (RelML) file.
The basic role of a RelML file is to relate the variables and
variable types of the CellML file into their equivalent in
the TecML file.
The simulation code generation system uses these

inputs to generate the set of equations describing the time
evolution of the variables in biological models. This step
creates equations (16) – (31) in the FHN example. Once
the model equations are applied with the ODE numerical
solution method, the next stage involves the generation of
the executable code that will do the actual calculations.
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Description language
The code generation system requires three inputs, namely,
the CellML file, TecML file and RelML file. This section
gives a short introduction of each and how it is used in the
algorithm and consequently, in the FHN model example.

CellMLmodel encoding standard
The CellML [1] language is an open standard based on
XML for describingmathematical models. It was designed
to allow scientists to share models even if they are using
different model-building software. The majority of the
models stored in its repository are cell representations
and these include information about the cell structure,
equations for underlying processes and in some cases,
boundary conditions. Figure 2 shows how a CellMLmodel
describes the mathematical equations of the FHN cell
model. The file lists the input and output variables as well
as their initial values and underlying equations. Note that
compact syntax representation is used to show its con-
tents and is based on Alan Garny’s notation for CellML in
the Cellular Open Resource (COR) software [6].

TecML: an ODE solving scheme description language
TecML (Time Evolution CalculationMarkup Language) is
an XML-based description language designed to describe
ODE numerical solutions that can be used in biosimu-
lations. This proposed standard allows the mathematical
description of solving schemes like the Euler and Runge-
Kutta methods. It allows integration of numerical meth-
ods with other description languages like CellML. TecML
categorizes variables into six different types (Table 1)
namely, diffvar, derivativevar, arithvar, constvar, timevar,
and deltatimevar. The variables determined by a rate of
change with respect to time (ξ ) are referred to as dif-
ferential variables (diffvar) while their derivatives (κ) are

Figure 2 Information in the CellML file of the FHNmodel
(represented in Alan Garny’s COR notation).

Table 1 Variable and function types in TecML

Type Definition

diffvar Differential variable (variable is a function of
time)

arithvar Temporal variable (can be substituted with
math equations)

derivativevar Derivative of diffvar

constvar Constants

timevar Time variable

deltatimevar Variable denoting the change of time per
step

diffequ Differential equation

nondiffequ Non-differential equation

called derivative variables (derivativevar). The removable
variables (ι) are the arithmetic variables (arithvar) and
variables that do not change in value (ζ ) are the constants
(constvar). In addition, the time (t) and time increment (δ)
are referred to as timevar and deltatimevar, respectively.
TecML also divides the mathematical equations into two
types; namely, differential (f ()) and non-differential (g())
equations. Equations of type (diffequ) are the derivatives
of a function while (nondiffequ) are the arithmetic func-
tions. The information and example of a TecML file for
the Modified Euler method are shown in Figure 3 and
Figure 4, respectively.

Figure 3 Information in the TecML file of the Modified Euler
method where ξ is the diffvar, κ is the derivativevar, ζ is the
constvar, and variable type ι is the arithvar.
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Figure 4 TecML file example.

RelationMarkup Language (RelML)
RelML is a language for describing the correspondence
between the variables in the CellML model file and the
variable types in an ODE numerical solution scheme
described in a TecML file. Figure 5 shows the corre-
spondence of variables described in the FHN CellML
file (Figure 2) and the variable types in the TecML file
(Figure 3). For the FHN model in Figure 2, variables x and
y are defined as diffvar and their respective derivatives
dx/dt and dy/dt as derivativevar. In addition, a, b, c, and d
are constvar type while r is considered a temporal variable
or arithvar type. Equations (2) and (3) are the formulas for
calculating the diffvar so the functions are categorized as
diffequ while the arithmetic equation for r in equation (1)
is a nondiffequ.
An example RelML file where the Modified Euler

method is applied to the FHNmodel is shown in Figure 6.
The first two statements after the header indicate the
filename and location of the corresponding CellML and
TecML file. The succeeding lines enumerate all the vari-
ables used in the FHN model and their corresponding
types. The complete RelML and TecML files used in this
paper have been published on the Web [7].

Figure 5 Information contained in the RelML file for the FHN
model and Modified Euler method.

Figure 6 RelML file example for FHNmodel and Modified Euler
method.

Executable code generation for equation sets
The system implementation of the code generator allows
the creation of codes in a number of programming lan-
guages. Table 2 lists the tested inputs and outputs of
the system. For a desktop CPU environment, the gener-
ator can produce source codes in C, Java, and Java with
BigDecimal library, which can handle higher precision
computing. Codes can be generated for both single cell
and cell array simulation. The cell array code genera-
tor can produce both 1D and 2D excitation propagation
codes. The generated codes for 2D simulation describes
the excitation propagation in a rectangular array with
N × M number of cells. Aside from generating single
CPU codes, it can also create codes suited for parallel
computing that runs on a GPU machine.

Methods: simulation code generation algorithm
Cell model description
The cell model is a collection of variables and equation
and can be written as{

k = dx/dt = f (x, y, t, z)
y = g(x, y, t, z)

, (32)

where x is a differential variables vector, k is a derivatives
vector, y is a temporal variables vector, and z is a constants
vector while t is the scalar variable for time. These variable
vectors can be expressed as sets with

x = [ x1, x2, · · · , xNx ]T , (33)
k = [ k1, k2, · · · , kNx ]T , (34)
y = [ y1, y2, · · · , yNy ]T , (35)

z = [ z1, z2, · · · , zNz ]T , (36)

Table 2 Input and output code types in the system

Cell Physiology FitzHugh-Nagumo model [5]

Model LuoRudy 1991 model [8], Kyoto 2003 Model [9]

ODE Solution Euler Method, Modified Euler Method

Scheme 1st-, 2nd-, 4th-order Runge-Kutta Method

Generated codes C code, Java, Java with BigDecimal

Cuda code (GPU)
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where Nx, Ny, Nz are the variable count for k, y, and z,
respectively. Furthermore, f (x, y, t, z) and g(x, y, t, z) are
function vectors with ki = fi(x, y, t, z) and yi = gi(x, y, t, z).
These function vectors are defined by

f (x, y, t, z) = [ f1(x, y, t, z), · · · , fNx(x, y, t, z)]T , (37)
g(x, y, t, z) = [ g1(x, y, t, z), · · · , gNy(x, y, t, z)]T . (38)

ODE solving scheme
Table 3 shows the elements inside a TecML file. Note
that all the TecML variables are denoted with Greek let-
ters. The differential equations for the cell model are
represented by the terms dξ/dt = �(ξ , ι, t, ζ ) and ι =
�(ξ , ι, t, ζ ). Inside a TecML file, the dependence between
the differential variables ξ0 (time t) and ξNξ

(time t + δ) is
given by

ξ i = σ i(	,
, δ) (0 ≤ i ≤ Nξ ), (39)
κi+1 = �(ξ i, ιi, τi, ζ ) (0 ≤ i ≤ Nξ ), (40)

ιi = �(ξ i, ιi, τi, ζ ) (0 ≤ i ≤ Nξ ), (41)
τi = Ti(t, δ) (0 ≤ i ≤ Nξ ), (42)

where the differential variable vector 	 and derivative
variable vector 
 are given by

	 =[ ξ0, ξ1, · · · , ξNξ
]T , (43)


 =[ κ1, κ2, · · · , κNξ ]T . (44)

CellML and TecML integration
The integration of the CellML model and TecML solving
scheme involves the mapping of corresponding variables.

Table 3 Information written in a TecML file

Notation Definition

ξ0 =[ ξ0,1, ξ0,2, · · · , ξ0,Nx ]T Input differential variable vector

ξNξ
=[ ξNξ ,1, ξNξ ,2, · · · , ξNξ ,Nx ]

T Output differential variable vector

ξ i(1 ≤ i ≤ Nξ ) Time differential variable vector

	 =[ ξ0, ξ1, · · · , ξNξ
]T Differential variable vector of ξ

t Current time value

δ Time step

ζ =[ ζ0, ζ1, · · · , ζNz ]T Constants vector

τ = Ti(t, δ) Calculation of variable Ti

�(ξ , ι, τ , ζ ) =[φ1(ξ , ι, τ , ζ ),

· · · ,φNx (ξ , ι, t, ζ )]T
Differential equation vector

�(γ , ι, τ , ζ ) =[ γ1(ξ , ι, τ , ζ ),

· · · , γNy (ξ , ι, t, ζ )]T
Temporal function vector

κ i+1 = �(ξ , ι, t, ζ ) Derivative variable vector

ιi = �(ξ , ι, t, ζ ) Temporal variable derived from ξ


 =[ κ1, κ2, · · · , κNξ ]
T Derivative vector of κ

ξi = σ(�, K , δ) Relation between ξi and �, K, δ

The mapping shows how each physiological model vari-
able written in CellML is replaced with its correspond-
ing TecML variable. The differential variable vector ξ of
TecML corresponds to the differential variable vector x of
CellML and reads as

ξ k ← xk =[ xk,1, xk,2 · · · xk,Nx ]
T . (45)

TecML’s derivative variable κ equates to the CellML’s
derivative variable dx/dt and the temporal variable ι cor-
responds to y and given by

κk+1 ← dxk/dt =
[
dxk,1
dt

,
dxk,2
dt

, · · · , dxk,Nx

dt

]T
, (46)

ιk ← yk =[ yk,1, yk,2, · · · , yk,Ny ]
T . (47)

Furthermore, the TecML equations κ = �(ξ , ι, t, ζ ) and
ι = �(ξ , ι, t, ζ ) correspond to the CellML equations f and
g, respectively, as shown by

�(ξ , ι, τ , ζ ) ← f (x, y, t, z), (48)
�(ξ , ι, τ , ζ ) ← g(x, y, t, z). (49)

Replacement algorithm
Once the variables are mapped, the differential and arith-
metic equations are transformed and expanded according
to the numerical method described in the TecML file.
First, the variables in the CellML model equations are
replaced with their corresponding TecML variables. Each
model equation is searched for any diffvar, derivativevar,
arithvar, constvar, timevar, or deltatimevar and that vari-
able is replaced with the corresponding TecML variable
name. This replacement procedure is represented in Stra-
chey brackets and expressed by the following function:

Rv�equ� = Rx�Rk�Ry�Rt�Rz�Rd�equ������,
(50)

where �equ� is the TecML equation and, for all i =
1, 2, ...,Nξ , the replacement functions are

Rx�ξ i� = �xi�, (51)
Rk�κ i� = �ki�, (52)
Ry�ιi� = �yi�, (53)
Rt�τi� = �ti�, (54)
Rz�ζ � = �z�, (55)
Rd�δ� = �d�. (56)

Note that the Strachey brackets inRx�ξ i� = �xi�means
that all the TecML diffvar (i.e. for i = 1 . . .Nξ ) in the argu-
ment is replaced with the corresponding CellML diffvar
xi. This function is true for all the other variable types in
TecML.
The generated set of equations advances the solu-

tion of the differential variables from time t to t + δ.
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Figure 7 shows how the algorithm generates the simula-
tion program from the input files. Note that the subrou-
tine replace v() in the algorithm replaces variables in
the CellML model equation with the TecML variables as
expressed in equation (50). The function replace sj()
generates one scalar equation from a vector equation and
appends index j to the variables. In the equations which
do not contain functions f or g, replace d() gener-
ates multiple scalar equations from a vector equation.
Finally, replace f() and replace g() unfold func-
tions f and g, respectively. These subroutines can be
expressed in the following transformations:

Rs,j�equ� = makeEquation�Sy,j�Sk,j�getLHS�equ���,
Sg,j�S f ,j�getRHS�equ����,

(57)

Rd,j�equ� = Sk,j�Sx,j�equ��, (58)
Rf �φj(ξ , ι, τ , ζ )� = T y,l�T x,k�fj(x, y, t, z)��, (59)
Rg�γj(ξ , ι, τ , ζ )� = T y,l�T x,k�gj(x, y, t, z)��, (60)

where the index-appending functions S and unfolding
functions T are defined as

Sx,j�xi� = �xi,j�, (61)
Sy,j�yi� = �yi,j�, (62)
S f ,j��� = �φj�, (63)
Sg,j��� = �γj�, (64)
T x,k�x� = �xk�, (65)
T y,k�y� = �yk�. (66)

Experiments and results
Code generation for the cell model simulation
The FHN cell model [5] was used to evaluate the proposed
system. The system was also used to generate simulation
codes for a number of cell models (LuoRudy1991 [8], Luo-
Rudy1994 [10] and KyotoModel2003 [9]) and with other
more accurate ODE numerical methods (e.g. 4th-order
Runge-Kutta method). All the generated code used in the
simulation experiments can be downloaded from the files
section of the program generator site [7].

Figure 7 Algorithm for generating the set of ODE numerical solution equations.
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The traditional approach to creating simulation exper-
iment codes also offers little flexibility once the soft-
ware is created. Changing the numerical ODE solution
method means making major revisions in the simulation
code. The proposed method allows the flexibility of using
different simulation models, boundary conditions, and
numerical methods for a simulation experiment. Since
the simulation codes are generated automatically, users
can choose or change their desired ODE solver without
making changes in the simulation codes themselves. Also,
this can give clear information on what is calculated to
generate the simulation results.
The different cell models and ODE numerical methods

produced varying simulation code sizes. Table 4 lists the
number of execution steps generated for the cell models
using different ODE solutions. The table shows that the
more complex themodel becomes and themore equations
it has, the larger the number of steps to compute the
model equations in the code.
An issue in approximating ODE solutions is the accu-

racy of the numerical method used. A good approxima-
tion to the underlying differential equation needs to be
achieved in order to arrive at accurate simulation results.
We tested a number of commonly used ODE numerical
methods to determine how the use of different solutions
affect the accuracy of the calculations. The three methods
used were Euler, Modified Euler and 4th-order Runge-
Kutta. Each of these methods were used to generate an
FHN model simulation code that runs in a single CPU.
The generated code can run in different compilers and
does not require third party software.
In order to test the accuracy of the ODE numerical

methods, simulation codes were generated in Java using
the BigDecimal class and numeric formatting. The Java
BigDecimal can represent a large number of decimal
places and help avoid rounding errors. It can offer higher
precisions than the 16 decimal digits offered by floating
point double. In the simulation codes, we used BigDeci-
mal to represent the numbers in a 32-digit decimal point
precision format for all the ODE solving methods. Differ-
ent time steps were also used in testing the accuracy of
these ODE methods, ranging from 10−1 ms to 10−5 ms.
The simulation using a time step of 10−6 and Runge-Kutta

Table 4 The number of execution steps for the generated
codes for different cell models and ODE numerical
methods

Cell Model Euler Modified Euler Runge-Kutta

FHN 11 16 26

LuoRudy1991 70 117 211

LuoRudy1994 123 211 387

Kyoto Model 335 560 1200

as ODE solving scheme was used as the basis to com-
pute for the root-mean-square error (RMSE) and evaluate
the accuracy of the other calculations. The RMSE was
computed for all the calculations using different ODE
numerical methods and in varying time steps (Figure 8).
Each level in the RMSE indicates a 1/10 less accuracy in
the simulation results compared to the calculations using
Runge-Kutta and 10−6 ms time step.
The first-order Euler method gave the largest error

(log error ≈ 10−3) while the Modified Euler resulted to
a smaller error. The fourth-order Runge-Kutta method
resulted with the best accuracy (log error ≈ 10−10). How-
ever, the Runge-Kutta error is almost constant from the
time step 10−3 ms, . This can be attributed to the rounding
error of digits over the used 32-digit precision.
Simulation codes using different ODE numerical meth-

ods were also generated for models more complicated
than the FHN or Hodgkin-Huxley model. For this, we
used the model introduced by C. Luo and Y. Rudy in
1991 [8]. It is a simple cell model of cardiac action poten-
tial that uses Hodgkin-Huxley type equations to calculate
ionic currents. The RMSE computations undertaken for
the FHN model were also applied for the Luo-Rudy 1991
simulations. Codes were generated for the three ODE
solutions with time steps ranging from 10−1 to 10−4 ms.
Meanwhile, the simulation using the Euler method with a
time step of 10−5 ms was used as the reference for RMSE
calculations (Figure 9).

Excitation propagation simulations
One possible application of 1- or 2-dimensional excitation
propagation simulation is cardiac arrhythmia research.
Computational models have provided new insights into
the underlying mechanisms of re-entry like the role of

Figure 8 Relationship between the time step and calculation
error for each ODE numerical method used in generating the
FHNmodel. The results and root-mean-square errors (RMSE) are
computed using Java BigDecimal. The result of the Runge-Kutta
method with 10-6 ms time step is used as reference for the RMSE
computations.
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Figure 9 Relationship between the time step and calculation
error for each ODE numerical method used in generating the
LuoRudy 1991 model.

ionic currents and ion channel mutations [11]. In addi-
tion, designs of defibrillation treatments can be optimized
using simulations of excitation propagation to achieve
good clinical results for patients.
Simulation codes for the Luo-Rudy 1991 model were

generated to simulate cell excitation propagation on a
2D homogeneous sheet. The two-dimensional cell action
potential propagation simulations were run for both CPU
and GPU to compare the speed of calculations. The CPU
simulation was performed with an intel Core i7 880 pro-
cessor with 8 GB of memory running Windows 7. The
GPU has a single Nvidia Tesla C2050 processor with 448
CUDA cores, and 3 GB memory in a CentOS 5.5 system.
The programs are written in C for the CPU simulations
and Cuda C for the GPU.
In the experiments, the size of the homogeneous sheet

was varied from 10240 (10240 × 1) to 1433600 (10240
× 14) cells with 10240-cell increments. The computa-
tion time was measured for each increment. Figure 10
shows the CPU and GPU computational time at differ-
ent cell array sizes. Results showed that by using the GPU,
the computational time can be accelerated 50 times as
compared to using a standard CPU.

Discussion
Traditionally, biological function simulation programs
have to be manually created from scratch. This is manage-
able with small models or simulation experiments but it
becomes less practical once model complexity increases.
The more complex the model becomes the larger the
program becomes and the harder it is to create and main-
tain such programs. The Doty model [12] showed that
the cost of software development is proportional to the
square exponential of the number of computational steps.
As seen from Table 4, the number of computational steps
increases with the complexity of the model. By using
this system, the creation of a simulation program from

Figure 10 CPU and GPU execution time ratio of the excitation
propagation simulation.

biological models becomes simpler. The system takes
input from experts in biological functions through CellML
models and mathematical experts through ODE numeri-
cal solutions and automatically generates the simulation
code. The automatic code generation allows it to deal
with large and complex models without the proportional
increase in software development cost. This also keeps the
softwaremaintenance cost low since the programs are cre-
ated with the same structure, regardless of the biological
model under study.
The system’s support for multiple programming lan-

guages makes it easier for users to test the model in
different programming environments and keep the cost
of switching from one programming language to a low.
Based on the codes generated for the purpose of this
paper, science and engineering students typically create a
Java simulation code from the C version within four days.
The system requires the formatted RelML file to do the

first stage of the algorithm and the RelML information
can also be used to automatically determine the bound-
ary conditions. The RelML information can be extracted
automatically from the CellML model file but boundary
conditions are not always available.We need amathemati-
cal representation of boundary conditions which are com-
patible with declarative description. This can be addressed
by the inclusion of PEPML experimental protocol [13] in
the system. PEPML is an XML-based language that can
describe the initial conditions and procedures of an exper-
imental protocol. It describes boundary conditions in a
mathematical form and is purely represented in a declar-
ative manner, making it easy to combine with the current
implementation of our system.
The attainable order of accuracy for approximating

the Luo-Rudy 1991 model equations was determined
by running simulations of the model using different
ODE numerical methods. The results of the comparisons
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between ODE solving schemes showed that the model can
be accurately predicted by the first-order ODE solutions.
The use of higher-order numerical solutions has a mini-
mal effect on the values of the approximations (Figure 9).
The Luo-Rudy model is a set of nonlinear differential
equations that use higher order ODE solutions but it can
be seen from the Taylor series expansion that equations
from the second-order term has little or negligible effect.
The structure of the system, where the ODE solver can
be easily changed with the appropriate TecML file, allows
one to confirm the accuracy of the model simulation such
as the case with the Luo-Rudy 1991 model (see Additional
file 1).
Although the system is fully implemented, further

improvements are still to be added. The generated excita-
tion propagation code does not consider the optimization
of the model variables for parallel processing. Therefore,
code parallelization is low and may have contributed to
slower execution in the GPU environment. Also, the sys-
tem can only handle equations with a single term in the
left-hand side. Other equation forms will be addressed in
future implementations.
Furthermore, simultaneous calculations using differ-

ential algebraic equations (DAE) are still not available.
Simultaneous equations appear in some models and
implicit numerical methods. The handling of implicit
methods is available in the inputs but not in the cur-
rent implementation of our system. A simultaneous
equation library, other ODE numerical solutions library
like CVODE, or a linear algebra library like LINPACK
could be incorporated into our system. This can be a
possibility with our plan to design a library interface
description language to handle numerical solution inputs.
Future implementations also need to address the need

for a declarative design of describing procedural methods.
Complex ODE numerical methods like the ones described
in the Kinetic Simulation Algorithm Ontology (KiSAO)
[14] are difficult or impossible to encode in the current
version of TecML. We are in the process of redesigning
TecML and the system to incorporate methods that are
suitable for the types of problems scientists are addressing
with manually-created code, including adaptive methods.
This can greatly enhance the usability of the proposed
method.
In addition, the systemmay be integrated with SED-ML.

SED-ML allows description of the simulation environ-
ment, which includes the name of the numerical method
to be used in the simulation. A starting point for inte-
gration would be to provide TecML information of a
numerical method for the KiSAO entry in SED-ML to
allow simulation software to refer to this description.
Another point would be to create support for SED-ML
files in the code generation system in order to create more
complex experiments that use more than one model or

experiments with different simulation methods applied.
This will allow users the flexibility of choosing not only the
ODE solving methods but also the experiment protocol
when generating their simulation codes.

Conclusion
In this paper, we proposed a method to automatically
generate executable simulation codes using CellML phys-
iological models and ODE numerical solution methods.
The generated code describes the time-evolution of the
set of differential equations enumerated by the CellML
model. The code generation system is composed of a two-
stage approach that allows flexible generation of complex
sets of equations.
To evaluate the effectiveness of the proposed system,

several combinations of physiological cell models and
ODE solving schemes were generated. The output of the
numerical approximations were in accordance with the
published results of the cell models. Results for the Luo-
Rudy 1991 simulations also indicated that it only has
first-order accuracy. The comparison of execution time
for 2D excitation propagation also showed that the use of
GPU can accelerate the processing time by 50 times as
compared to a CPU.
The code generation system allows executable simula-

tion codes to be easily generated from CellML and TecML
files. This can be very useful in the field of biological
model simulation since it provides the tools to quan-
titatively evaluate the mathematical equations in these
models.

Additional file

Additional file 1: Appendix.
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