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Abstract

Background: Genome-wide association study (GWAS) aims to find genetic factors underlying complex phenotypic
traits, for which epistasis or gene-gene interaction detection is often preferred over single-locus approach.
However, the computational burden has been a major hurdle to apply epistasis test in the genome-wide scale due
to a large number of single nucleotide polymorphism (SNP) pairs to be tested.

Results: We have developed a set of three efficient programs, FastANOVA, COE and TEAM, that support epistasis
test in a variety of problem settings in GWAS. These programs utilize permutation test to properly control error
rate such as family-wise error rate (FWER) and false discovery rate (FDR). They guarantee to find the optimal
solutions, and significantly speed up the process of epistasis detection in GWAS.

Conclusions: A web server with user interface and source codes are available at the website http://www.csbio.unc.
edu/epistasis/. The source codes are also available at SourceForge http://sourceforge.net/projects/epistasis/.

Introduction

Genome-wide association study (GWAS) examines the
genetic variants across the entire genome to identify
genetic factors associated with observed phenotypes. It
has been shown to be a promising design to locate
genetic factors causing phenotypic differences [1,2].
Since most traits of interest are complex, finding gene-
gene interaction has received increasing attention in
recent years [3,4]. Unlike single-locus approaches, which
test and estimate the association between the phenotype
and one marker (or SNP) at a time, two-locus epistasis
detection approaches search for associations between
the phenotype and each SNP-pair.

In general, there are two challenges in epistasis detec-
tion. The first is to develop statistical test that can effec-
tively capture the interaction between SNPs. The second
challenge is to reduce the computational burden since
there are an extremely large number of SNP-pairs need
to be tested in the whole genome. The computational
challenge is further compounded by the multiple testing
problem. Controlling family-wise error rate (FWER) and
false discovery rate (FDR) are two standard approaches
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for controlling error rates [5]. With large number of
SNPs correlated, permutation test is preferred over sim-
ple Bonferroni correction [6], which is often to conser-
vative. The idea of permutation procedure is to
randomly shuffle the phenotype values and reassign
them to each sample. The test statistics of the randomly
permutated data are then computed and used to esti-
mate the distribution of test statistics under the null
hypothesis. Permutation test dramatically increases the
computation burden. For example, with 100,000 SNPs
and 1000 permutations, the number of SNP-pairs need
to be tested is about 500 billion. Efficient algorithms
and software implementations are needed to enable
wide applicabilities of epistasis mapping in GWAS scans.

Several approaches have been proposed for epistasis
detection. For studies with a small number of SNPs,
exhaustive algorithms that explicitly enumerate all possi-
ble SNP combinations have been developed [7,8]. These
methods are very time consuming and cannot be
applied in genome-wide studies. Heuristic approaches
such as genetic algorithm [9] has also been developed.
However, these approaches do not guarantee to find all
significant SNP-pairs. Another common heuristic is a
two-step approach [10-12]. In the first step, a subset of
SNPs are selected according to certain criteria. In the
second step, the selected SNPs are used for subsequent
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epistatic analysis. One limitation of this approach is that
it misses SNPs with week marginal effects but high
epistasis [13].

We have implemented a set of three two-locus epista-
sis detection tools that can be applied in various
problem settings in GWAS. Our programs use the per-
mutation procedure for proper error control. They are
exhaustive and accurate in the sense that no significant
epistatic interactions between SNP-pairs are skipped. It
has been theoretically proved and experimentally vali-
dated that these programs greatly speed up the epistasis
test process.

Designing Principles

We briefly discuss the designing principles of these pro-
grams here. The detailed technical description of the
algorithms behind these programs can be found in
[13-15]. All the three programs utilize search space
pruning to reduce the computational cost of epistatic
test.

The first program is FastANOVA. It utilizes an upper
bound of the two-locus ANOVA test to prune the
search space. The upper bound is expressed as the sum
of two terms. The first term is based on the single-SNP
ANOVA test. The second term is based on the geno-
type of the SNP-pair and is independent of permuta-
tions. This property allows to index SNP-pairs in a 2 D
array based on the genotype relationship between
SNPs. Since the number of entries in the 2 D array is
bounded by the number of individuals in the study,
many SNP-pairs share a common entry. Moreover, it
can be shown that all SNP-pairs indexed by the same
entry have exactly the same upper bound. Therefore,
we can compute the upper bound for a group of SNP-
pairs together. Another important property is that the
indexing structure only needs to be built once and can
be reused for all permutated data. Utilizing the upper
bound and the indexing structure, FastANOVA only
needs to perform the ANOVA test on a small number
of candidate SNP-pairs without the risk of missing any
significant pair.

The second program COE takes the advantage of con-
vex optimization. It can be shown that a wide range of
statistical tests, such as chi-square test, likelihood ratio
test (also known as G-test), and entropy-based tests are
all convex functions of observed frequencies in contin-
gency tables. Since the maximum value of a convex

Page 2 of 3

function is attained at the vertices of its convex domain,
by constraining on the observed frequencies in the con-
tingency tables, we can determine the domain of the
convex function and get its maximum value. This maxi-
mum value is used as the upper bound on the test sta-
tistics to filter out insignificant SNP-pairs. COE is
applicable to all tests that are convex.

FastANOVA and COE are designed for studies with
homozygous genotypes and relatively small sample sizes.
In human GWAS, the genotype is usually heterozygous,
and the number of individuals can be large. We there-
fore developed the third program, TEAM, that is suita-
ble for human GWAS. The basic idea of TEAM is that
it incrementally updates the contingency tables of two-
locus test by utilizing a minimum spanning tree. The
nodes of the tree are SNPs and the edges represent the
difference between two connected SNPs. It can be
shown that we can get the exact test values by searching
the minimum spanning tree without scanning all indivi-
duals. TEAM records the test statistics of all SNP-pairs
instead of just the ones with high values. Thus it allows
FWER and FDR calculation.

Software Implementation and Overview

We provide a Web server with graphic user interface for
using these tools. All three programs are implemented
in C++. The source codes of both Windows and Linux
versions are available for downloading.

The programs are easy to use. The inputs files include
the genotype and phenotype data. The user specified
parameters are the desired significance level, and the
number of permutations to perform. The outputs are
the significant SNP-pairs and their corresponding signif-
icance levels.

These programs are suitable for different problem set-
tings in GWAS. FastANOVA is designed for ANOVA
test that examines the association between quantitative
phenotypes and binary genotypes. COE is designed for
binary phenotypes and genotypes. COE supports any
test statistic which is a convex function of observed fre-
quencies in its corresponding contingency table. Both
FastANOVA and COE support FWER control and are
suitable for datasets with relatively small sample sizes,
e.g., with less than 100 individuals. TEAM is designed
for binary phenotypes but not limited to binary geno-
types. It supports both FWER and FDR control. It can
be applied to GWAS data with large samples(e.g. with

Table 1 Programs and their corresponding problem settings for epistasis detection in GWAS

Program Trait Genotype Error Type Sample Size Supported Test
FastANOVA quantitative binary FWER less than a hundred ANOVA test

COE binary binary FWER less than a hundred convex test

TEAM binary any FWER & FDR hundreds to thousands test based on contingency tables
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hundreds to thousands of individuals). It can be applied
to all statistical tests based on contingency tables.
Detailed comparisons of the three methods can be
found in Table 1.

FastANOVA and COE can speed up the process of
epistasis detection for about two to three orders of mag-
nitude compared to brute force approaches. TEAM
speeds up the process for about one order of magnitude,
but provides wider applicability. In general, for datasets
of about 100,000 SNPs and less than 100 individuals,
FastANOVA and COE can be run on a single processor
desktop computer, with runtime ranging from minutes
to a few days depending on the parameter setting. For
large human GWAS datasets, it is recommended to run
TEAM on cluster. For example, for a dataset of 100,000
SNPs and 500 individuals and 100 permutations (for
FDR controlling), using a 100-core cluster, the runtime
is about 2 days.

Conclusion

We provide Web server and source codes of three effi-
cient epistasis detection tools, FastANOVA, COE, and
TEAM for GWAS. These programs implement permu-
tation procedure for proper error control and support a
wide range of problem settings. They can significantly
speed up the computationally intensive epistasis detec-
tion process.
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