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Abstract

Modern life sciences research increasingly relies on computational solutions, from large scale data
analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an
increasing role as they are eminently suited at mapping biological observations and hypotheses into
a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible
even without a background in quantitative sciences, yet it allows life scientists to describe and
explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview
of the concepts used in Boolean simulations, present a software library that can perform these
simulations based on simple text inputs and give three case studies. The large scale simulations in
these case studies demonstrate the Boolean paradigms and their applicability as well as the
advanced features and complex use cases that our software package allows. Our software is
distributed via a liberal Open Source license and is freely accessible from http://

booleannet.googlecode.com

Introduction each element of the system has a binary (Boolean) state,

At the most general level systems biology approaches con-
sist of two steps. The first is building a model of the biolog-
ical system of interest, a representation that incorporates
existing knowledge and experimental observations. This
model then can be subjected to various conditions and
may be allowed to evolve in time, a step typically referred
to as simulation. These simulations then can be used to
generate qualitative or quantitative predictions on the
overall behavior of the system.

Mathematical models of biological systems range from
continuous to discrete (based on the representation of the
status of the system's components) and from determinis-
tic to stochastic (based on their incorporation of random-
ness and noise) [1-4]. The simplest models assume that

and are therefore discrete, deterministic and parameter-
free. However, several extensions of the Boolean mode-
ling formalism also allow for iterative parameterization
and the incorporation of continuous and stochastic ele-
ments [5-7]. The most important barrier precluding a
more general use of Boolean models consists of the diffi-
culties of the computational implementation of a given
model. This implementation needs to perform in a con-
sistent, correct and extensible manner to allow for the
integration of all empirical knowledge as well as the unfet-
tered exploration of the dynamical behaviors allowed by
the model. There are very few tools that focus on qualita-
tive modeling, for example the Genetic Network Analyzer
[8] supports qualitative predictions via a piece-wise linear
model and provides advanced visualization capabilities.
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There are several software packages that focus on quanti-
tative modeling via differential equations [9-11], and dis-
crete modeling [7,12] but these tools are less suited for
exploratory analyses of biological systems in which the
majority of kinetic parameters are unknown.

In this paper we present a software toolbox (from now on
referred to as BooleanNet) that greatly facilitates the
implementation and study of Boolean dynamic models of
biological systems. It is a tool that can simulate a Boolean
model based on a very simple text based input describing
the interactions and regulatory relationships in the sys-
tem. The main distinguishing feature of our software com-
pared to previous efforts is that we aim to provide support
for modeling the dynamic behavior of well defined bio-
logical sub-systems, rather than focusing on a larger scale
network inference, analysis or modeling based on high
throughput data. Once the rules are expressed the soft-
ware can employ several simulation strategies: synchro-
nous iterations, stochastic updates or hybrid modeling via
a system of piecewise linear differential equations. More
importantly our system allows the integration of non-
boolean mechanisms into the simulation thus expanding
its applicability to a wider domain. Every aspect of the
simulation process may be customized: node states may
be overridden at different stages of the operation, updat-
ing rules may be altered, and differential equations may
be augmented or replaced. We place particular focus on
the documentation and demonstrate use cases from sim-
ple usage samples to advanced and realistic examples. A
series of 6 tutorials guide users through various aspects of
the simulations. Our code, written in the Python pro-
gramming language, is available as a software library and
is distributed via a liberal Open Source license, freely
accessible through the Google project hosting service at

http://booleannet.googlecode.com

Boolean network models

A Boolean network model is a directed graph (network)
whose nodes represent the elements of a system, edges
represent regulatory relationships between elements, and
every node is characterized by a True (1) or False (0) state
[12-14]. Thus a network with N nodes will have 2N possi-
ble states. As time passes the state of each node is deter-
mined by the states of its neighbors (nodes that point to
it), through a rule called a transfer function. In the sim-
plest case the transfer function can be represented as a
statement acting on the inputs via a logical function using
the logical operators NOT, AND, OR; this statement also
returns a True/False state. Depending on the output of the
transfer function, the state of the node either stays the
same or changes. A change in the state of a given node
generally triggers changes in the state of nodes regulated
by it (the nodes it points to). This way the state of the net-
work goes through a dynamic trajectory.

http://www.scfom.org/content/3/1/16

This type of Boolean representation is very common in
biology, although hardly if ever is named as so. For exam-
ple in the case of a gene regulatory network scientists rou-
tinely describe genes and pathways as being activated or
repressed (On/Off), the analysis of gene expression levels
leads to a classification of genes as being differentially
expressed or not, during an infection a pathogen is either
cleared or it persists. This classification is a very natural
desire to order and categorize observed phenomena, and
intuitively estimate the outcome of regulatory mecha-
nisms. However, the complexity of biological networks
makes even the enumeration of network components and
interactions a daunting task, and human intuition must
be complemented by formal modeling. Boolean models
and their extensions (collectively called qualitative mod-
els) have the common feature of very closely reflecting the
topology of the regulatory network (i.e. the upstream/
downstream regulatory relationships invoked in verbal
pathway descriptions). In addition they readily incorpo-
rate inhibitory relationships (through the NOT operator)
and combinatorial regulation of a target node by several
regulators, whether these regulators act independently
(represented by the OR operator) or they are condition-
ally dependent (represented by the AND operator). Differ-
ent types of qualitative models offer a range of choices for
representing the passing of time, from regular time steps
to sampling over relative timescales and to explicit incor-
poration of known decay times.

In its simplest formalism a Boolean model assumes that
the processes represented as edges in the network have
similar durations, and correspondingly node states are
updated at multiples of a fixed time step [15]. In our soft-
ware we call this mode of operation as synchronous
update. During each iteration nodes are updated to their
new values only after all rules have been applied, thus the
order of updates does not affect the outcome. Synchro-
nous Boolean models starting with a given initial condi-
tion will always reach the same state after the same
number of steps, i.e. the system is entirely deterministic.
Moreover, due to the finite number of states attainable by
the system, the system's trajectory in state space will ulti-
mately converge into an attractor, either a single state
called a steady state or a repeating sequence of states
called a cycle and characterized by a cycle length. Any
given Boolean model has one or several attractors, and
each attractor is associated with a set of states (called its
basin of attraction) that if used as an initial condition,
converge into that attractor. In synchronous Boolean
models the basins of attraction of each attractor are non-
overlapping. Even in this simple case much can be learned
from varying the initial conditions and analyzing the
model's steady states and cycles (or lack thereof). We may
be able to indentify nodes (variables) that are more
important and drive the early appearance of steady states,
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or we may find nodes whose effect matters very little,
either because of the redundancy of the pathway topology
or because their effect is being cancelled out. Our software
implements a steady state and cycle detection routine that
can be used to quickly determine their length and first
occurrence.

The synchronous model cannot properly account for the
different time scales over which various events take place
in the biological system. Most often these time scales are
not known, nonetheless imposing the equality of all time
scales, as the synchronous model does, introduces an arti-
ficial constraint. We can extend the base model to account
for timescales by allowing the node updates to affect the
state instantaneously while performing the updates in a
random order within each iteration [5,2]. This extension
introduces stochasticity into the evolution of the system
and allows it to sample all timescales. In this mode of
operation (named asynchronous update in BooleanNet)
the study of the network most often consists of perform-
ing a large number of replicate simulations that start from
the same initial condition, then tallying the attractors
reachable from this initial condition (there can be several
due to the stochasticity of the asynchronous update) and
the states of the nodes at different time steps. This model
can be further expanded by introducing rank ordered
updates, essentially grouping nodes into separate ranks
based on information regarding the relative duration of
their synthesis or decay. The update orders in each rank
group are randomized but are executed before the rules
contained in a higher rank group. This mode is also sup-
ported by our software, where the ranks are numbers
affixed to each rule, and rules sharing a certain number are
considered a rank group.

The piece-wise linear formalism allows us to build special-
ized Boolean rules that can represent each individual
node in even greater detail [16]. This model associates two
variables to each node: a continuous variable akin to a
concentration, and a discrete variable akin to the activity
of the node. The change in the continuous variable corre-
sponding to a given node is determined by a differential
equation that combines a synthesis term given by a
Boolean function of the activities of the nodes regulating
the node and a free (uncatalized) degradation term. The
discrete and continuous variables are connected via two
parameters: a decay rate for the continuous variable and a
threshold that determines the minimum concentration
for which the discrete variable is True. Thus a Boolean rule
of the form A = B AND C will be replaced by a differential
equation of the form:

dconcy

" ((concy > thresholdy ) and ( conc; > threshold,. ) ) — decay , X conc ,

http://www.scfom.org/content/3/1/16

Above an inequality will numerically evaluate to 1 if the
statement is True and 0 otherwise. Here the Boolean (first)
term corresponds to the regulated synthesis of A while the
decay (second) term corresponds to its free (unregulated)
dissociation. When the Boolean term is True the equation is

d conc A
dt

asymptotic increase to 1/delay,, or maintenance of an ini-

of the form =1-decay 4, X conc ,, leading to an

tial concentration equal to this value. When the Boolean

term is False the equation is of the form
d . .
C‘;?CA = —decay 4 X conc 4, leading to an exponential

decrease to zero, or maintenance of an initial concentra-
tion equal to zero. The limiting values 0 and 1/delay, of

the continuous variable represent, respectively, the
absence of species A and maximal concentration of spe-
cies A, and correspond to the discrete values False (0) and
True (1). Note that the steady states of a Boolean model
are the same, regardless of the mechanism of update, and
coincide with the steady state of the Boolean variables of
the corresponding piecewise linear model.

Case studies

Below we present a number of realistic scenarios that
apply the BooleanNet library to several different problem
domains. The rule sets, data and the code that produce the
plots are part of the software package and can be found in
the 'examples' directory. The case studies are based on
published models; our main goal for presenting these is to
demonstrate the modeling aspect of the approaches, to
illustrate and explain customizations and adaptations
that are often necessary to capture the biological phenom-
ena of interest. Biological modeling is rarely "pure" in the
sense of being able to fully and rigorously adhere to the
mathematical formalisms. There are always elements,
actors and processes do not completely fit the model, and
need to be altered to accommodate some observed behav-
iors or limits. We believe that our software allows for an
unprecedented customization, where all aspects of the
simulation process can be interacted with, nodes, rules
and states can be observed and modified in every single
timestep. The rules, simulation and visualization code for
each of the examples below can be found in the main
source code distribution. Each of the three projects below
have been published as separate article [18-20] that
should be consulted for a more in depth description on
the details of the biological systems and of the dynamic
models. On our website we also distribute a series of
accessible tutorials that gradually introduce the concepts
used in the simulations.
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Case study I: Modeling abscisic acid (ABA) — induced
stomatal closure in plants

Plants take up carbon dioxide for photosynthesis through
microscopic pores called stomata. The size of the pores is
determined by the two cells (called guard cells) that flank
the stomata, and the shape of the guard cells is in turn
determined by their water content and turgor pressure.
Plants also lose water by transpiration through the pores,
thus they need to regulate the size of the stomata to bal-
ance carbon gain with water loss. During drought condi-
tions plants synthesize a hormone called abscisic acid
(ABA). ABA acts as a signal to a complex signal transduc-
tion pathway leading to the closure of the stomata. Fol-
lowing an extensive curation of the experimental
literature, in [17] we have synthesized a network for ABA-
induced closure that includes 43 nodes and 69 regulatory
edges (see website or source distribution for the rules).
The nodes of the network include proteins, ion channels
and secondary messengers, as well as more abstract con-
cepts such as membrane depolarization and stomatal clo-
sure. The state of 38 of the 43 nodes is regulated by other
nodes in the network and in [17] we expressed this regu-
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lation as Boolean rules. Here we use these rules to com-
pare the asynchronous and piece-wise linear frameworks
of BooleanNet in exploring the dynamics of the system.

We performed an asynchronous Boolean simulation
using 300 random initial states, with ABA on for all 10
steps of the simulation. In the piecewise linear mode we
set the decay rates of all nodes equal to 1 and each thresh-
old @ equal to 0.5, and we performed 300 simulations
with random initial states. For both modes, we tested the
wild type as well as a number of important knockouts and
plotted the average state of the node "Closure" as a func-
tion of time steps. Specifically, in the asynchronous
Boolean simulation we plot the percentage of simulations
that have Closure = 1, while in the piecewise linear simu-
lation we plot the mean and mean + standard deviation of
the continuous variable corresponding to closure. In the
wild type (WT) simulation, all nodes are updated as spec-
ified by the Boolean rules. We also performed knockout
simulations of sphingosine one-phosphate (S1P), phos-
phatidic acid (PA), cytosolic pH (pH.) and abscisic acid
insensitive (ABI1), setting the corresponding node's state

Variability of Closure in WT and knockouts
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Abscisic Acid signaling simulations: a) Effect of mutations on closure in asynchronous Boolean simulation of
ABA induced closure. Blue line indicates the closure response (percentage of simulations with Closure = |) in wild type
(WT). Three other knockout mutants: SIP (green line), PA (red line) and pH. (light-blue line) were shown experimentally to
be less sensitive to ABA in term of ABA-induced stomatal closure. b) Variability of closure in WT, pH_ knockout and PA
knockouts in a piece-wise linear simulation. The mean of the continuous variable corresponding to the node Closure in 300
simulations is plotted as a solid line and dashed lines indicate the mean plus or minus standard deviation. In the WT simulation
the variation of closure (blue lines) is small during the first 20 time steps, increases from 20 to 50 time steps and gradually
decreases to 0 after 50 time steps. In PA (red lines) and pH_ (light blue lines) knockout mutants, although the mean closure
responses are similar to that of WT, the variances are not decreasing after 50 time steps.
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to False (0). We found that for WT simulations, the two
model variants give the same closure response (ABA Fig-
ure 1a/b, blue curves). In addition, the two simulations
produced qualitatively similar results for knockouts. We
also observed that the variation of the closure response
was smaller in WT than in the mutants, whereas the
mutants showed similar, higher than WT variations. These
results suggest that knockouts not only affect the mean
closure responses but also their variation [17].

Case study 2: T-cell large granular lymphocyte leukemia
simulation

T-cell large granular lymphocyte leukemia (T-LGL) is char-
acterized by the abnormal clonal expansion of antigen-
primed mature cytotoxic T lymphocytes (CTLs) poten-
tially driven by chronic virus infection [18]. Different
from normal CTLs which are eliminated through activa-
tion induced cell death (AICD) after antigen encounter
[19], leukemic LGL cells persist in the peripheral blood
and remain long-term competent [18]. Fas-induced apop-
tosis is crucial for normal AICD [19]. Despite the high-
level expression of both Fas receptor and Fas ligand
(FasL), leukemic T-LGL cells are resistant to Fas-induced
apoptosis [20]. Leukemic T-LGL cells express high-level of
soluble Fas (sFas) which serves as decoy Fas receptor to
inhibit normal Fas-induced apoptosis. In addition, it has
been shown that the pro-survival MAPK pathway [21,22]
and JAK-STAT pathway [23] are constitutively active in
leukemic T-LGL, and anti-apoptotic BCL2 (B-cell leuke-
mia/lymphoma 2) family member MCL1 (myeloid cell
leukemia sequence 1) is overexpressed [23]. In order to
examine the effect of these known deregulations on nor-
mal AICD process, in [24] we constructed the AICD net-
work representing the main events occurring during
normal CTL activation and AICD process from literature.
Proteins, mRNAs and small molecules (such as lipids) are
represented as nodes in the network. "Apoptosis" is also
included as a node to summarize the biological effect. We
used "Stimuli" as a general node indicating antigen stim-
ulation. Interactions or regulations between nodes were
represented by edges, starting from the upstream regula-
tors and ending at the downstream targets. Here we con-
sider a simplified version of the network and the
corresponding Boolean rules in a simulation using the
asynchronous mode of BooleanNet (see website for the
rules). Except nodes known to have basal level activities,
most of the nodes in the network were initiated in the
state of 0 to reproduce a resting-T-cell-like state. We then
explored the dynamics under chronic antigen stimulation
via constantly setting node "Stimuli" at the state 1. This
condition induces the depletion of reactive CTL through
AICD, as illustrated by the asymptotic increase to 1 of the
apoptosis percentage in the output "Normal-Apop" of Fig-
ure 2a. Overexpression of MCL1 or sFas alone by con-
stantly setting the node "MCL1" or "sFas" in the state 1

http://www.scfom.org/content/3/1/16

does not prevent the onset of apoptosis. However, simul-
taneous overexpression of MCL1 and sFas completely
inhibits the apoptosis onset. At the same time, Figure 2b
shows that the oeverexpression of MCL1 and sFas induces
the constitutive activity of Ras (a key component of the
MAPK pathway [21]) as well as the constitutive expression
of FasL, reproducing an LGL-like state This example illus-
trates that complex biological behaviors such as apoptosis
can be successfully modeled using a simple Boolean
model (see [24] for further results).

Case study 3: Modeling the mammalian immune response
to B. bronchiseptica infection

The dynamic interplay between a pathogen (e.g. virus or
bacterium) and its host's defenses decides whether the
pathogen will be cleared or will establish a niche in the
host. The gram-negative bacterium Bordetella bronchisep-
tica persists within its mammalian hosts by interfering
with the hosts' immune responses [25]. In [26] we synthe-
sized a network of interactions among the immune effec-
tors of a mammalian host and the virulence factors of B.
bronchiseptica from the experimental literature. The net-
work contains 34 nodes (see website for rules) that repre-
sent immune cell types, signaling molecules (cytokines),
antibodies and bacterial factors such as antigens. The reg-
ulatory edges of the network represent immune processes
such as antigen presentation, activation of immune cells
as well as the modulation of immune components by bac-
teria. Based on our best interpretation of the experimental
literature we formulated a piece-wise linear model and we
used BooleanNet to simulate the interplay between host
immune components and bacterial factors.

The piece-wise formulation was replaced by specific ordi-
nary differential equation for the nodes 'bacteria’ and
‘phagocytosis' to incorporate known details of dynamic
behavior. We implemented spatial separation of certain
cells and cytokines by defining distinct and linked com-
partments. Intercompartmental transport of cells was
given by Hill type functions, e.g.

dDCy _ DC{I
dt DCP+H"

—¥pc DCy,

where DC represents the concentration of dendritic cells
and subscripts 1 and 2 indicate the concentrations in dif-
ferent compartments. Since cytokines flow to various
places through lymph and blood their inter-compartmen-
tal dynamics were given by the random variables rc and r
so that a fraction rc - r <f <rc + r of the total concentration
of the cytokine is present in the compartment in which the
cytokine is produced and a fraction 1- f is transported to
the other compartment. We changed the fraction f after a
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Changes in Apoptosis
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Changes in FasL and Ras
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Representative outputs of simulating the long-term survival of leukemic T-LGL cells. (a). Inhibition of AICD by

constitutive overexpression of MCLI and sFas. Chronic antigen stimulation will induce the depletion of reactive CTL through
AICD, as suggested by the asymptotic increase to | of apoptosis percentage in the output "Normal-Apop". Constitutive over-
expression of MCLI or sFas alone does not rescue reactive CTL from AICD, as suggested by the output "MCLI-Apop" and
"sFas-Apop". However, when simulating the simultaneous overexpression of MCLI and sFas, resistance to AICD was achieved,
see output "LGL-like-Apop", as observed in leukemic T-LGL cells. (b). Additional characterization of the effect of simultaneous
overexpression of MCLI and sFas. In addition to the inhibition of AICD, simulations under conditions mimicking the constitu-
tive overexpression of MCLI and sFas also reproduced the known deregulated signaling pathway components in leukemic T-
LGL cells, such as constitutively overexpressed FasL ("LGL-like-FasL") and constitutively activated Ras ("LGL-like-Ras"), were

reproduced compared to simulations mimicking normal CTL activation ("Normal-FasL" and "Normal-Ras").

variable expiration time several times during the simula-
tion.

Figure 3 shows the time course of components of the
innate and adaptive immune response generated by
BooleanNet. These results reproduce the outcome of a
custom computer code written specifically for simulating
host-pathogen interactions (unpublished data). Addition-
ally the software runtime is shorter and it offers a general-
ized framework which can be used to simulate different
systems. BooleanNet also provides extra features includ-
ing a user friendly way to search in the parameter space
and to import parameter files.

We also simulated previously known network perturba-
tions e.g. B cell, T cell deletion and the infections by Type
I1I secretion system (TTSS) defective Bordetella strain. The
model could reproduce the persistence of bacteria in the
absence of B cells (see Figure 3, DEL) and T cells [27,28].

It can also simulate the earlier clearance of bacteria in
AbscN mutant (TTSS defective strain) infection [29].

Conclusion

The success of qualitative models in describing specific
cellular systems and processes such as flower develop-
ment [30,31], the yeast cell cycle [32], and Drosophila
embryonic development [33-35] indicates that the topol-
ogy of regulatory networks has a significant role in restrict-
ing their dynamical behavior. Our software allows
straightforward implementation of qualitative models for
systems where the network topology or pathway is at least
partially known.
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The time course of (a) innate and (b) adaptive immune response to B. bronchiseptica is shown by plotting the
dynamics of the following representative nodes: EC: Epithelial cells, PIC: pro-inflammatory cytokines, C: Complement, IL12:
Interleukin-12 (I and Il indicate concentrations in different compartments) and PH: phagocytosis. Colors demonstrate the dif-
ference in the behavior of the nodes in case of normal (blue: wild type simulation) and perturbed (red: deletion simulation)
host immunity. The perturbation is modeled by turning off the node representing B cells. The figure shows that innate immune
responses are active for a longer period in the deletion simulation due to the persistence of bacteria. Plot b shows that com-
plement is activated in normal simulations but not in the deletion simulation. The figure also shows the coupled fluctuations of
the concentrations of IL12 in the two compartments. We can also see that the rate of phagocytosis is much slower in the dele-
tion simulation.
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